
UNIVERSITY OF BELGRADE
FACULTY OF MATHEMATICS

Mirjana M. Maljković

PREDICTION OF ALPHABETS OF LOCAL
PROTEIN STRUCTURES USING DATA

MINING METHODS

Doctoral Dissertation

Belgrade, 2021.

UNIVERZITET U BEOGRADU
MATEMATIČKI FAKULTET

Mirjana M. Maljković

PREDVIĐANJE ALFABETA LOKALNE
STRUKTURE PROTEINA PRIMENOM
METODA ISTRAŽIVANJA PODATAKA

doktorska disertacija

Beograd, 2021.

Advisor:

dr Nenad Mitić, full professor
University of Belgrade, Faculty of Mathematics

Committee:

dr Saša Malkov, associate professor
University of Belgrade, Faculty of Mathematics

dr Jovana Kovačević, assistant professor
University of Belgrade, Faculty of Mathematics

dr Alexandre de Brevern, senior researcher
Université de Paris, INSERM UMR_S 1134, DSIMB, Université de la
Réunion, INTS 6, rue Alexandre Cabanel 75015 Paris, France

Date of the defense:

Mentor:

dr Nenad Mitić, redovni profesor
Univerzitet u Beogradu, Matematički fakultet

Članovi komisije:

dr Saša Malkov, vanredni profesor
Univerzitet u Beogradu, Matematički fakultet

dr Jovana Kovačević, docent
Univerzitet u Beogradu, Matematički fakultet

dr Alexandre de Brevern, viši istraživač
Université de Paris, INSERM UMR_S 1134, DSIMB, Université de la
Réunion, INTS 6, rue Alexandre Cabanel 75015 Paris, France

Datum odbrane:

Dissertation title: Prediction of alphabets of local protein structures using data
mining methods

Abstract: Proteins are linear biological polymers composed of amino acids
whose structure and function are determined by the number and order of amino
acids. The structure of the protein has three levels: primary, secondary and ter-
tiary (three-dimensional, 3D) structure. Since the experimental determination of
protein 3D structure is expensive and time-consuming, it is important to develop
predictors of protein 3D structure properties from the amino acid sequence (pri-
mary structure), such as 3D structure of the protein backbone. The 3D structure
of the backbone can be described using prototypes of local protein structure, i.e.
prototypes of protein fragments with a length of few amino acids. A set of local
structure prototypes determines the library of local protein structures, also called
the structural alphabet. A structural alphabet is defined as a set of N proto-
types of L amino acid length. The subject of this dissertation is the development
of models for the prediction of structural alphabet prototypes for a given amino
acid sequence using different data mining approaches. As one of the most known,
structural alphabet Protein Blocks (PBs) was used in one part of the doctorial re-
search. Structural alphabet PBs consists of 16 prototypes that are defined using
fragments of 5 consecutive amino acids. The amino acid sequence is combined
with the structural properties of a protein that can be determined based on amino
acid sequence (occurrence of repeats in the amino acid sequence) and results of
predictors of protein structural properties (backbone angles, secondary structures,
occurrence of disordered regions, accessible surface area of amino acids) as an
input to the prediction model of structural alphabet prototypes. Besides the de-
velopment of models for prediction of prototypes of existing structural alphabet,
the analysis of the capability of developing new structural alphabets is researched
by applying the TwoStep clustering algorithm and construction of models for the
prediction of prototypes of new structural alphabets. Several structural alpha-
bets, which differ in the length of prototypes and the number of prototypes, have
been constructed and analyzed. Fragments of the large number of proteins, whose
structure is experimentally determined, were used to construct the new structural
alphabets.

Keywords: data mining, structural alphabet, prediction model, Protein Blocks

Research area: computer science

Research sub-area: data mining, bioinformatics

Naslov disertacije: Predviđanje alfabeta lokalne strukture proteina primenom
metoda istraživanja podataka

Rezime: Proteini su linearni biološki polimeri sastavljeni od aminokiselina čiji
broj i redosled određuju strukturu i funkciju proteina. Struktura proteina je defin-
isana sa tri nivoa: primarnom, sekundarnom i tercijarnom (trodimenzionalnom,
3D) strukturom. Pošto je eksperimentalno određivanje 3D strukture proteina
skupo i vremenski zahtevno, postoji potreba za razvojem programa koji na osnovu
aminokiselinske sekvence (primarne strukture) predviđaju osobine 3D strukture,
kao što je 3D struktura glavnog lanca proteina (eng. backbone). 3D struktura
glavnog lanca proteina može da se opiše korišćenjem prototipova lokalne strukture
proteina, tj. delova proteina od nekoliko uzastopnih aminokiselina. Skup defin-
isanih prototipova lokalne strukture čini biblioteku lokalnih struktura proteina,
koja se još naziva i strukturni alfabet (eng. structural alphabet). Svaki strukturni
alfabet je definisan kao skup od N prototipova dužine L aminokiselina. Pred-
met ove disertacije je pravljenje modela za predviđanje prototipova strukturnog
alfabeta za zadatu aminokiselinsku sekvencu primenom različitih algoritama is-
traživanja podataka. Kao jedan od najpoznatijih, strukturni alfabet Protenski
blokovi (eng. Protein Blocks) je korišćen u jednom delu istraživanja u okviru dis-
ertacije. Strukturni alfabet Proteinski blokovi se sastoji od 16 prototipova koji su
napravljeni na osnovu delova proteina od 5 uzastopnih aminokiselina. Kao ulaz
u model za predviđanje prototipova strukturnog alfabeta koriste se strukturne
osobine proteina koje mogu da se odrede na osnovu aminokiselinske sekvence
(lokacija ponavljajuće niske u aminokiselinskoj sekvenci) i rezultati predviđanja
nekih strukturnih osobina proteina (uglovi glavnog lanca, sekundarne strukture,
pojavljivanje neuređenih regiona, pristupačna površina). Pored razvoja modela
za predviđanje prototipova postojećeg strukturnog alfabeta, u radu je izvršena i
analiza mogućnosti razvoja novih strukturnih alfabeta primenom algoritma klas-
terovanja TwoStep i pravljenje modela za predviđanje prototipova novih struk-
turnih alfabeta. Radi analize, napravljeno je više strukturnih alfabeta sa različitim
brojem prototipova i različite dužine prototipova. Za istraživanje novih strukturni
alfabeta korišćeni su delovi velikog broja proteina čija je struktura eksperimen-
talno određena.

Ključne reči: istraživanje podataka, strukturni alfabeti, model za predviđanje,
Proteinski blokovi

Naučna oblast: računarstvo

Uža naučna oblast: istraživanje podataka, bioinformatika

Acknowledgements

I would first like to thank my advisor, dr Nenad Mitić, for patient support and
guidance throughout my doctorial studies and the writing of this dissertation. I
would like to acknowledge dr Alexandre G. de Brevern and dr Miloš Beljanski for
their wonderful collaboration and invaluable expertise during the research. I am
deeply grateful to dr Saša Malkov and dr Jovana Kovačević for their insightful
comments and suggestions.

Contents

1 Introduction 1

2 Data mining methods 4
2.1 Data mining . 4
2.2 Format of dataset . 5
2.3 Classification . 6
2.4 Clustering . 28

3 Structural alphabets 34
3.1 Protein structure . 34
3.2 Overview of existing structural alphabets 39
3.3 Protein Blocks . 47

4 New Protein Blocks predictors 57
4.1 Material . 58
4.2 PBs prediction models . 72
4.3 Analysis of PBs prediction models 79

5 Development of new structural alphabets 87
5.1 Process of the development of structural alphabets 87
5.2 Material . 88
5.3 Development of structural alphabets 89
5.4 Development of predictors for structural alphabets 93
5.5 Comparison of structural alphabet 5_16 and Protein Blocks 96

6 Conclusion 105

7 Appendix 107

x

7.1 Size of clusters which corresponds to prototypes of structural al-
phabets . 107

7.2 Graphical presentations of SA prototypes 115
7.3 Frequency of DSSP states in SAs with 20 prototypes 127

Bibliography 142

List of Figures

2.1 General steps in data mining process 1 4
2.2 Fixed-length sliding window data format 6
2.3 Sequence data format . 6
2.4 Example of decision tree . 13
2.5 Illustration of structure of Multilayer Perceptron 23
2.6 General structure of BRNN unfolded for three elements 26
2.7 Memory block with one memory cell 27
2.8 Example of Kohonen SOM . 30

3.1 General structure of an amino acid 34
3.2 Peptide bond (C −N) between two successive amino acids 36
3.3 Illustration of dihedral angles ϕ and ψ [74] 37
3.4 Ramachandran plot [33] . 37
3.5 Example of ψ − ϕ plot of local structural motif [76] 41
3.6 Kohonen feature map. Each cell presents one local structure motif

shown by ψ− ϕ plot. The colours indicate the frequency of occurrence
of an individual motif. Light yellow presents many instances and dark
red a few instances. [76] . 42

3.7 Representation of 16 Protein Blocks obtained with clustering procedure
[27]. Carbon atoms are represented in grey, oxygen atoms in red and
nitrogen atoms in purple. 49

3.8 Illustration of translation of the amino acid sequence to PB sequence 50
3.9 General scheme of a PBs prediction by PB-kPRED 2 55

xi

LIST OF FIGURES

4.1 Illustration of the process of PBs prediction models development . . . 59
4.2 Mean absolute error between true dihedral angles in proteins and pre-

dicted angles by Spider3 per PB . 69
4.3 Precision (a) and recall (b) calculated on the test dataset for PBs pre-

diction models . 80
4.4 Precision (a) and recall (b) of C5.0 models with a defined cost matrix

for a particular PB on test part . 81
4.5 Performance measures (a) and confusion matrix (b) calculated on test

dataset for PBC5.0d model . 85

5.1 Steps in the research about structural alphabets 88
5.2 Frequencies of DSSP states per amino acid position in cluster members

for prototypes of SA 5_16 with id from 1 to 10 100
5.3 Frequencies of DSSP states per amino acid position in cluster members

for prototypes of SA 5_16 with id from 11 to 16 101

7.1 Size of clusters in structural alphabets constructed using fragments of
length 4 . 108

7.2 Size of clusters in structural alphabets constructed using fragments of
length 5 . 109

7.3 Size of clusters in structural alphabets constructed using fragments of
length 6 . 110

7.4 Size of clusters in structural alphabets constructed using fragments of
length 7 . 111

7.5 Size of clusters in structural alphabets constructed using fragments of
length 8 . 112

7.6 Size of clusters in structural alphabets constructed using fragments of
length 9 . 113

7.7 Size of clusters in structural alphabets constructed using fragments of
length 10 . 114

7.8 Dihedral angles of prototypes in structural alphabets of length 4 with
number of prototypes from 10 to 50 116

7.9 Dihedral angles of prototypes in structural alphabets of length 4 with
number of prototypes from 60 to 100 117

7.10 Dihedral angles of prototypes in structural alphabets of length 5 with
number of prototypes from 10 to 50 118

xii

LIST OF FIGURES

7.11 Dihedral angles of prototypes in structural alphabets of length 5 with
number of prototypes from 60 to 100 119

7.12 Dihedral angles of prototypes in structural alphabets of length 6 with
number of prototypes from 10 to 50 120

7.13 Dihedral angles of prototypes in structural alphabets of length 6 with
number of prototypes from 60 to 100 121

7.14 Dihedral angles of prototypes in structural alphabets of length 7 with
number of prototypes from 10 to 50 122

7.15 Dihedral angles of prototypes in structural alphabets of length 7 with
number of prototypes from 60 to 100 123

7.16 Dihedral angles of prototypes in structural alphabets of length 8 with
number of prototypes from 10 to 50 124

7.17 Dihedral angles of prototypes in structural alphabets of length 8 with
number of prototypes from 60 to 100 125

7.18 Dihedral angles of prototypes in structural alphabets of length 9 with
number of prototypes from 10 to 50 125

7.19 Dihedral angles of prototypes in structural alphabets of length 9 with
number of prototypes from 60 to 100 126

7.20 Dihedral angles of prototypes in structural alphabets of length 10 with
number of prototypes from 10 to 50 126

7.21 Dihedral angles of prototypes in structural alphabets of length 10 with
number of prototypes from 60 to 100 127

7.22 Frequency of DSSP states per amino acid position in clusters of SA
4_20 for clusters with id from 1 to 10 128

7.23 Frequency of DSSP states per amino acid position in clusters of SA
4_20 for clusters with id from 11 to 20 129

7.24 Frequency of DSSP states per amino acid position in clusters of SA
5_20 for clusters with id from 1 to 10 130

7.25 Frequency of DSSP states per amino acid position in clusters of SA
5_20 for clusters with id from 11 to 20 131

7.26 Frequency of DSSP states per amino acid position in clusters of SA
6_20 for clusters with id from 1 to 10 132

7.27 Frequency of DSSP states per amino acid position in clusters of SA
6_20 for clusters with id from 11 to 20 133

xiii

7.28 Frequency of DSSP states per amino acid position in clusters of SA
7_20 for clusters with id from 1 to 10 134

7.29 Frequency of DSSP states per amino acid position in clusters of SA
7_20 for clusters with id from 11 to 20 135

7.30 Frequency of DSSP states per amino acid position in clusters of SA
8_20 for clusters with id from 1 to 10 136

7.31 Frequency of DSSP states per amino acid position in clusters of SA
8_20 for clusters with id from 11 to 20 137

7.32 Frequency of DSSP states per amino acid position in clusters of SA
9_20 for clusters with id from 1 to 10 138

7.33 Frequency of DSSP states per amino acid position in clusters of SA
9_20 for clusters with id from 11 to 20 139

7.34 Frequency of DSSP states per amino acid position in clusters of SA
10_20 for clusters with id from 1 to 10 140

7.35 Frequency of DSSP states per amino acid position in clusters of SA
10_20 for clusters with id from 11 to 20 141

List of Tables

2.1 Confusion matrix for a multiclass classification problem 7

3.1 Molecular and linear formulas of 20 amino acids 3 35
3.2 Protein Blocks reference angles [15]) 48
3.3 Description of Protein Blocks [36]. For each protein block, its fre-

quency, average rmsd between its constructed Cα coordinates and clus-
ter members in a training set, average rmsda between its dihedral
angles and dihedral angles of cluster members in a training set and
coarse classification based on corresponding secondary structures in
which protein block most frequently occurs are presented. 50

3.4 Accuracy of the PBs prediction using Bayes approaches [15, 36] 53

4.1 Repeat flags at the fragment level for DN and IN repeats 64

xiv

LIST OF TABLES

4.2 Amino acid frequencies in whole dataset, part subset1, part subset2,
and in UniProtKB/Swiss-Prot database 66

4.3 Percentage of predicted disorder fragments and calculated
disorderdiff ∗ 100 for each disorder predictor 71

4.4 List of used data mining packages and classification algorithms 73
4.5 Q16 of SPSS models obtained using SPSS Modeler on data with fixed-

length sliding window format and dataset partition based on fragments
. 75

4.6 Q16 for PBs prediction models built on subset1 using algorithm C5.0
with options boost 4 and cross-validation 10 and without or with a cost
matrix for preferable PB . 76

4.7 Q16 for PBs prediction models built on subset2 using algorithm C5.0
with options boost 4 and cross-validation 10 and without or with a cost
matrix for preferable PB . 77

4.8 Q16 for PBs prediction models built using algorithms Random Forest
and Multilayer Perceptron . 78

4.9 Q14 of PBs prediction models . 80
4.10 Comparison of precision per PB for pairs of PBs prediction models

built using same classification algorithm and data with and without
disorder and repeat flags . 83

4.11 Comparison of the performance by the recall of PBs predictors of other
authors[26] and the best-obtained model PBC5.0d in the research . . 86

5.1 Minimal, maximal and average value of rmsda (in ◦) calculated be-
tween the cluster prototypes and corresponding cluster members and
the minimal and maximal size of clusters (in percent) for each con-
structed SA . 92

5.2 rmsda and mae between true angles and angles calculated based on SAs
prototypes for amino acid sequences in a training part of the dataset.
Values are in °. 94

5.3 Description of the best-obtained prediction model of prototypes per
SA. For each SA prediction model is presented architecture (activation
function and the number of nodes per hidden layer), accuracy on the
training part and accuracy on the test part. 95

5.4 Classification report of best-obtained prediction models for SAs with
length 4, 5, 6 and 7 with up to 50 prototypes 97

xv

LIST OF TABLES

5.5 Classification report of best-obtained prediction models for SAs with
length and 7 with more than 50 prototypes and SAs with length 8, 9
and 10 . 98

5.6 mae for ψ and ϕ angles calculated using the predicted prototypes as-
signed by developed SA prediction models for SAs of length 4 and sizes
from 20 to 90 . 99

5.7 Description of SA 5_16 prototypes . 102
5.8 Classification report of aplied prediction model for SA 5_16 prototypes

on test part . 103

xvi

1 Introduction

Data mining is a field of computer science whose methods (classification, cluster-
ing, association rules) discover significant patterns in a dataset. The availability
of accurate data is the basis of successful research in the field of data mining.
The significant developments in computer science in recent decades have enabled
storage and easy access to a large amount of data. The availability of data from
various fields has enabled the usage of data mining methods , and it has led to
great scientific and industrial progress.

Bioinformatics is the interdisciplinary field that combines knowledge from sev-
eral scientific areas (mainly from mathematics, computer science and biology) with
the aim to develop or improve the algorithms for solving intrinsically complex bi-
ology problems. One such problem is the prediction of 3D protein structure from
an amino acid sequence.

Since the experimental determination of the protein 3D structure is expen-
sive and time-consuming, the development of an accurate predictor of protein 3D
structure from an amino acid sequence is crucial for many structure-based stud-
ies, such as protein function prediction or drug design. A common approach for
solving this problem is to use predictors of different protein structure properties
and then combine their results to obtain a more accurate prediction of the protein
3D structure [6].

For the approximation of protein backbone, prototypes of the local 3D protein
structure conformations can be used. Prototypes are determined based on 3D
protein structure conformations of fragments of consecutive amino acids in a pro-
tein sequence. The set of defined prototypes composes the library of local protein
structures, also called the structural alphabet (SA). The whole protein backbone
can be described by concatenating the prototypes which correspond to consecutive
fragments extracted from the beginning to the end of a protein sequence.

Several research teams have developed different structural alphabets using the

1

CHAPTER 1. INTRODUCTION

experimentally determined 3D structure of proteins. Developed structural alpha-
bets differ in the length of prototypes (expressed in the number of consecutive
amino acids), the properties used to describe the protein backbone (atom coor-
dinates, distances, backbone angles), methods used to define prototypes and the
number of obtained prototypes. One of the most used structural alphabets is
Protein Blocks which consists of 16 prototypes described with backbone angles
for five consecutive amino acids [15]. Besides the approximation, structural al-
phabets can be used for the prediction of the protein backbone. The predictor
of prototypes of structural alphabets can be used as one step in a system of pro-
tein structure properties predictors for the prediction of the full 3D structure of a
protein or in bioinformatics studies based on structural alphabets, such as protein
structure analysis and comparison of proteins using structural alphabet prototypes
[69]. Structural alphabets and predictors of structural alphabet prototypes from
an amino acid sequence can be constructed using data mining methods.

Clustering algorithms are used for finding the appropriate prototypes of the lo-
cal 3D protein structure conformations for approximation of protein backbone and
classification algorithms are used for the development of predictors of prototypes
from an amino acid sequence.

The dissertation includes a description of the development of accurate pre-
dictors of prototypes of structural alphabet Protein Blocks using data mining
methods. In order to create a base for the development of new predictors of local
protein structures, the capability of developing a new structural alphabet using
a clustering algorithm that was not used in previous research studies was also
analyzed in the thesis.

The text is organized as follows:

• Chapter 2 describes approaches for the preparation of dataset and data min-
ing methods used in the research. Overview of classification algorithms used
for the development of predictors for structural alphabet Protein Blocks is
given, as well as an overview of clustering algorithms used for construction
of structural alphabet Protein Blocks and sets of prototypes of local protein
structures obtained in the second part of the research.

• Chapter 3 describes the structure of proteins and existing structural alpha-
bets. Structural alphabet Protein Blocks and existing predictors of its pro-
totypes are described in details.

2

CHAPTER 1. INTRODUCTION

• Chapter 4 describes the process of building the new models for prediction
of Protein Blocks, obtained as a result of the research. Also, amino acid
sequence information used as input for prediction models is described.

The performance of new models for the prediction of Protein Blocks devel-
oped using several classification algorithms and the results of comparison of
the obtained Protein Blocks prediction models are analyzed.

The performance of the developed model is compared with the performance
of existing predictors of the structural alphabet Protein Blocks. The results
described in this part of the dissertation are submitted for review in [64].

• Chapter 5 contains results of the analysis of the capability of developing a
new structural alphabet using a clustering algorithm, in order to use it as
the basis for the development of new predictors of local protein structures.

• Chapter 6 represents the conclusion about the results obtained in the re-
search and plans for future work.

3

2 Data mining methods

2.1 Data mining
Data mining can be described as a process of discovering useful patterns in a
dataset. Different data mining methods could be used for discovering patterns in
a dataset like classification, clustering and association rules. Various algorithms
were developed for each data mining method. Figure 2.1 shows the general process
of data mining. The process usually begins with getting familiar with the data. In
order to use information obtained from different sources, data has to be merged
and cleaned from useless attributes or instances. Each data mining algorithm
requires a specific format of input data; so before applying the desired algorithm,
the data has to be transformed into an appropriate form. The result of an applied
data mining algorithm on a transformed data is called a model. Before using the
obtained model in the real world, the model has to be evaluated. Each data mining
method has specific quality measures which can be used to evaluate the model.
The data mining process is rarely linear. It is usually iterative because we often
need to go back one or more steps after evaluating the model in order to improve
the results.

collection

of data

merging and

cleaning data

data

transformation

application of

data mining

method

evaluation

Figure 2.1: General steps in data mining process 1

1Some icons are from https://thenounproject.com

4

CHAPTER 2. DATA MINING METHODS

The requirement of a good data mining process is the availability of files with
quality data for the research. The significant development in computer science in
recent decades has enabled easier storage and access to a large amount of data
from various fields, such as medicine and biology. The availability of data has
enabled the application of data mining methods in various fields, and it has led to
great scientific and industrial progress.

2.2 Format of dataset
Datasets consist of instances (objects). Instances are described using attributes
(properties). An attribute type can be categorical or numerical. The datasets
used for data mining can be stored in different formats. Based on the format
of the dataset, different data mining algorithms can be applied to the dataset.
Two commonly used data formats for the description of amino acid sequences in
bioinformatics are fixed-length sliding window format and sequence format [44, 42].

Let S = E1E2...Ei...EN be a sequence of N elements and each element at
position j (j = 1, 2, ...N) is described with k attributes (Attr1j , Attr2j , ..., Attrkj).

In the fixed-length sliding window format data, a fragment of 2 ∗ L + 1 con-
secutive elements in a sequence presents one instance of a dataset (where 2 ∗L+1

is from 1 to N). Fragment of 2 ∗ L + 1 consecutive elements is also called a
sliding window of length 2 ∗ L + 1. An instance in a dataset corresponds to a
central element in a fragment. In addition to the attributes of the central ele-
ment, the attributes of L elements on its left side, and attributes of L elements
on its right side, are extracted too, in order to present information about the
neighbours of the central element. Besides the attributes of an individual el-
ement (element level attributes), the instance may also contain attributes that
are related to more than one element in a fragment (attributes at the level of a
fragment). Figure 2.2 illustrates the fixed-length sliding window data format. In
Figure, Ex−LEx−L−1...Ex...Ex+L−1Ex+L presents fragment with central element at
position x in a sequence. Each element is described with k attributes. Attrji is
j-th element level attribute of element at position i. Besides element level at-
tributes, m fragment level attributes are also shown. FAttrjx is a j-th fragment
level attribute. Thus, a fragment is described with k ∗ (2 ∗ L+ 1) +m attributes:
(Attr1x−L, Attr

2
x−L, ..., Attr

k
x−L, ..., Attr

1
x, Attr

2
x, ..., Attr

k
x, ..., Attr

1
x+L, Attr

2
x+L, ..., Attr

k
x+L,

FAttr1x, FAttr
2
x, ..., FAttr

m
x).

5

CHAPTER 2. DATA MINING METHODS

EX-L ... EX-2 EX-1 EX EX+1 EX+2 ... EX+L

.

.

.

.

.

.

AttrX

1

AttrX

2

AttrX

k

...

AttrX+1

1

AttrX+1

2

AttrX+1

k

...

AttrX+2

1

AttrX+2

2

AttrX+2

k
...

AttrX+L

1

AttrX+L

2

AttrX+L

k

...

AttrX-1

1

AttrX-1

2

AttrX-1

k

...

AttrX-2

1

AttrX-2

2

AttrX-2

k

...

AttrX-L

1

AttrX-L

2

AttrX-L

k

...

element

level

attributes

...FAttrx

1

FAttrx

m

FAttrx

2

fragment

level

attributes

+

fragment

Figure 2.2: Fixed-length sliding window data format

One instance in a sequence data format presents the whole sequence. Figure 2.3
illustrates the sequence format data. Sequence consists of N elements. Since each
element is described with k properties, for the description of a sequence is usedN∗k
attributes: (Attr11, Attr21, ..., Attrk1 , ..., Attr1i , Attr2i , ..., Attrki , ..., Attr1N , Attr2N , ..., AttrkN).

Fixed-length sliding window data format enables the description of short-range
relationships, i.e. only relationships between 2 ∗ L + 1 elements described with
an instance. Sequence format describes the short-range relationships between
elements in a sequence (elements in a neighbourhood), as well as the long-range
relationships (relationship of elements with distant positions in the sequence).

E1 E2 ... EX-1 EX EX+1 ... EN-1 EN

AttrX

1

AttrX

2

AttrX

k

...

AttrX+1

1

AttrX+1

2

AttrX+1

k

...

AttrN-1

1

AttrN-1

2

AttrN-1

k

...

AttrN

1

AttrN

2

AttrN

k

...

AttrX-1

1

AttrX-1

2

AttrX-1

k

...

Attr2

1

Attr2

2

Attr2

k

...

Attr1

1

Attr1

2

Attr1

k

...

.

.

.

.

.

.

Figure 2.3: Sequence data format

2.3 Classification
Let (X,Y) be a set of attributes of a dataset, where X = (X1, X2, ...Xn) is a set
of input attributes, and Y is the target attribute. Classification is a process of
learning the relationship between the input attributes and the target attribute. A

6

CHAPTER 2. DATA MINING METHODS

predicted
class

C1 C2 ... Cn

actual
class

C1 C11 C12 ... C1n

C2 C21 C22 ... C2n

...
Cn Cn1 Cn2 ... Cnn

Table 2.1: Confusion matrix for a multiclass classification problem

target attribute has to be a categorical attribute with two or more distinct values,
which are called classes. There is no type restriction for the X attributes. The
result of classification is a model, which can be described as function f : X → Y .

A classification model can be used to predict a class for an instance with an
unknown class. For example, classification can be used to predict if a patient has
a particular disease. To build such a model, it would be necessary to have health
data of patients who have the disease, as well as data of patients who do not
have the disease. The obtained model can then be used to predict whether a new
patient has the disease or not based on his or her health data.

Evaluation measure
Various measures can be used for the evaluation of a classification model. The
confusion matrix (see Table 2.1) shows the results of classification for each pair
of classes. Let n be the number of classes in a dataset and let Ci denote the i-th
class. The confusion matrix is a square matrix with dimension n × n. Each row
or column is labelled with one class. The labels of rows present the true classes of
instances, and labels of the columns present predicted classes of instances. Cij is
the number of instances of class Ci classified as class Cj by a model.

Based on the confusion matrix, the following measures of model performance
can be calculated:

• Accuracy is the fraction of instances accurately predicted by a model and
is calculated by:

Accuracy =

∑n
i=1Cii∑n

i=1

∑n
j=1Cij

(2.1)

Accuracy is used for a general evaluation of a model.

7

CHAPTER 2. DATA MINING METHODS

• Precision, recall and F1 are used for a model performance per class.

– Precision of a class Ci is a fraction of the number of instances of class Ci
that the model has correctly classified among instances that the model
has classified with class Ci:

Precision for class Ci =
Cii∑n
j=1Cji

(2.2)

– Recall of a class Ci is a fraction of instances of class Ci that the model
has correctly classified:

Recall for class Ci =
Cii∑n
j=1Cij

(2.3)

– F1 is the harmonic mean of precision and recall:

F1 =
2 ∗ r ∗ p
r + p

=
2

1
r
+ 1

p

(2.4)

More information about presented evaluation measures can be found in [79, 3].
In bioinformatics, for accuracy is commonly used label Qk where k is the num-

ber of classes in a dataset. For example, accuracy for the prediction of Protein
Blocks is labelled asQ16, while the accuracy for the prediction of 3-states secondary
structures is labelled as Q3.

Dataset partition
Evaluation of the classification model using the instances on which it was trained
sometimes can give an incorrect estimate of how a model will behave on unseen
instances during the model building phase. A problem that may occur in clas-
sification is overfitting a model to instances used for model building. Overfitted
model classifies well instances used for building a model but classifies poorly the
unseen instances. To prevent the overfitting, the dataset may be split into two
parts: the training part and the test part. The training part is used for building
(training) model, while the test part is used for the final evaluation of the model.
The training part is usually larger than the test part (typically ratio of training
and test part is 70:30). Partition of the dataset should be stratified by classes.

8

CHAPTER 2. DATA MINING METHODS

Stratified partition ensures that classes are represented in the same percentage in
each part obtained by partition.

For most classification algorithms, it is necessary to adjust the algorithm’s
parameters in order to get the optimal model for the used dataset. If the training
part is used for training the models with different parameter values and the same
test part for evaluation of each of the obtained models, then the behaviour of
models on instances in a test part is taken into account during the selection of
optimal parameter values. This should not happen, since the test part should be
used for the final test of the optimal model. To overcame this problem, data can
be split into three parts: training part, validation part and test part. The training
part is used for building models with different values for algorithm parameters.
The validation part is used to estimate how the obtained models will behave on the
unseen data. Based on the estimated behaviour of the models on the validation
part, the optimal model is chosen. The test part is used for the final evaluation
of the optimal model. The final model can be built using optimal parameters on
the instances from the training and validation parts.

The consequences of splitting a dataset into three parts are: a smaller number
of instances is used for training a model in the phase of parameter adjustment,
and the obtained results are more sensitive to the partition of instances on parts.
If the dataset is small, the training part may not be representative. To overcome
this problem, a technique called cross-validation can be used to estimate the per-
formance of models trained with different parameter values in order to find the
optimal values of parameters. In cross-validation, a dataset is first split into the
training part and test part. In the phase of adjusting the parameters, the training
part is split in k equal-sized subsets called folds. The following procedure is per-
formed for each combination of parameter values: k different models are trained
with the same parameter values for the algorithm; each model is trained using
k − 1 folds, and validated on the remaining one fold; each model uses a different
fold for validation. To evaluate the performance of a model with used parameter
values, each obtained model is applied on a corresponding fold for validation and
the performance measure (usually accuracy) is calculated. The average value of
calculated evaluation measures on folds for validation is the estimated performance
of a model with used parameter values. In cross-validation, each instance is part
of the training dataset for estimating the performance of a model with the used
parameter values (k−1 times), and it is also used for validation (once). Using the

9

CHAPTER 2. DATA MINING METHODS

algorithm’s optimal parameter values (combination of parameter values with the
best-estimated performance), the final model is trained using the whole training
part. The final evaluation is done on the test part. The pseudocode of the process
of training an optimal model using cross-validation is shown in Algorithm 1. For
simplicity, accuracy is used as an evaluation measure.

Algorithm 1: Procedure for model selection using cross-validation
Input:
DS: dataset;
params: set of different combinations of values for parameters of
algorithm;
k: number of folds;
Split DS to train_part and test_part
Split train_part to k equal folds: folds = [fold1, fold2, ..., foldk]
params_validation = {}
foreach param ∈ params do

avg_acc = 0
for i = 1 to k do

folds_for_train = folds \ foldi
model=train_model(folds_for_train, param)
acc= apply_model(model, foldi)
avg_acc = avg_acc+ acc

end
avg_acc = avg_acc/k
params_validation[param] = avg_acc

end
optimal_param = key of params_validation with maximal value
final_model=train_model(train_part, optimal_param)
final_evaluation_acc= apply_model(final_model, test_part)

More information about presented techniques for data partition can be found
in [79, 3].

Ensembles
During the model-building phase, the decision boundaries between classes are
learned based on the training dataset [3]. Each algorithm uses certain assumptions
about the decision boundaries between classes. Also, different models can be
obtained by using the same algorithm, but different training datasets. Causes of
model’s errors in classification of instances can be:

10

CHAPTER 2. DATA MINING METHODS

• bias - a difference of learned decision boundaries from true decision bound-
aries between classes caused by assumptions of relationships between at-
tributes and classes;

• variance - sensitivity on changing the decision boundaries due to variation
in training data.

During the training phase of a model, a bias-variance trade-off should be found.
In order to reduce bias and/or variance in a classification, ensemble techniques

can be used. Ensemble techniques use multiple classification models for the clas-
sification of an instance. Classification models in the ensemble can be build using
different classification algorithms on the same training data оr with the same al-
gorithm but different training data or on the same training data but with different
weights of instances. Outputs of used models are combined for the final prediction
of the instance’s class. Ensemble techniques that can be used are bagging and
boosting [3].

The bagging technique [8] was designed to reduce the model variance. It is also
called bootstrapped aggregating because it uses the bootstrapping approach for
dataset preparation for building classification models of an ensemble. For training
each of the ensemble models, instances are sampled uniformly from a training set
with replacement. Sampled datasets are of the same size as the training dataset.
Each sampled dataset contains on average 63.2% of instances from the training
dataset, while some instances appear multiple times. Class with majority votes
from classification models is usually chosen as ensemble prediction.

Boosting technique [39] can be used to reduce the model bias. Each classi-
fication model is trained using the same classification algorithm and the whole
training dataset, but weights are assigned to instances in a training dataset. The
first model is trained using the same weight (1

N
, where N is the number of in-

stances) for all instances. Before training the succeeding model, the weights of
instances that are misclassified with the previous model are increased in order to
build a model that will better classify them, i.e. correct the errors of the pre-
viously made model. Classification algorithm can be modified to use weights of
instances, or bootstrap sampling of the training data can be used while weights
are determined as probabilities of choosing an instance.

11

CHAPTER 2. DATA MINING METHODS

Cost-matrix
Cost-sensitive learning technique [79] can be used for assigning the cost to misclas-
sifications of instances of one class with other classes. Cost-sensitive learning is
based on using a cost-matrix. Cost-matrixW is a square matrix with non-negative
elements. It has a same form like a confusion matrix (see Table 2.1). Element
W (i, j) of the matrix is the cost (or weight) of classifying an instance into class
j if its true class is i. By default, the cost of classifying an instance to a true
class is 0, while classifying it with the wrong class is 1. In the case of unbalanced
classes, a model with default cost-matrix might misclassify less frequent classes
while achieving good accuracy. For example, in a binary classification problem, if
90% of instances belong to one class, while the rest of instances belong to another
class, the model which classifies poorly the instances of the less frequent class will
have good accuracy.

The cost of a model is calculated by the formula

Cost =
n∑
i=1

n∑
j=1

C(i, j) ∗W (i, j) (2.5)

where n is the number of classes and C is the confusion matrix. If a user
defines the cost-matrix, it is taken into account during the model building phase.
The classification algorithm tries to avoid misclassifications with a high error cost.
The goal is to obtain a model with the lowest possible cost.

Decision trees
The decision tree [79] is a classification technique for which a classification model
has a form of a tree with two types of nodes:

• non-terminal nodes that have one or none parent, and two or more children.
The non-terminal node has an associated attribute test question, which can
have two or more answers. Each branch from parent to child corresponds
to one answer to the parent’s attribute question. Test questions are usually
in a form: What is the value of the test attribute? The purpose of the
test attribute is to separate instances that belong to different classes into
subsets. The root node is a non-terminal node with no parent, while other
non-terminal nodes in a tree have a parent.

12

CHAPTER 2. DATA MINING METHODS

• leaves are terminal nodes; they have one parent and none children. Each leaf
is associated with one class from a dataset on which a classification model
was built.

The classification of an instance using the decision tree is like answering the
questionnaire using the instance values of attributes. Starting from the root, an
instance goes down the branch which corresponds to the instance’s value of a test
attribute. If an instance goes to an internal node, the procedure is repeated, and
if it goes to a leaf node, the test instance is classified with the class assigned to
that leaf. Each path from a root to a leaf is one rule for the classification. Figure
2.4 shows an example of decision tree. Non-terminal nodes are coloured in orange,
and leaf nodes in yellow. The root is a node with attribute X as a test attribute.
One rule for classification is: If instance has value c in attribute X and m or n as
value of attribute Z, classify it with class C2.

X

C1 ZY

C1 C2 C1C2

a b c

>y

<=
 y

{m
,n

}

r

Figure 2.4: Example of decision tree

If a test attribute is categorical, the number of branches can be from two to
the number of unique values in a test attribute. If the number of branches is
smaller than the number of unique values in a test attribute, values are grouped
and one branch corresponds to one or a group of values. In Figure 2.4, branches
of a root correspond to one value in a test attribute X, while root’s rightmost
child with test attribute Z has a branch with grouped values (m and n). Values
of a continuous attribute are divided into two or more intervals and a branch is
assigned to each interval.

13

CHAPTER 2. DATA MINING METHODS

Various algorithms for building decision trees are proposed. They usually build
the decision tree using local decisions about the one best attribute for dividing the
instances. The aim of the division is to get children as clean as possible. A node
is clean if all its instances belong to the same class. The base steps in building a
decision tree are:

1. Start from a root node that holds all training instances.

2. (a) If a node is clean or contains only instances with the same values for all
attributes, define it as a leaf node and assign to it the majority class.

(b) Else, find the best attribute for dividing the training instances into as
clean children-nodes as possible.

3. Repeat step 2 for all non-terminal nodes.

Impurity measures are used to determine how clean the node is. Some of the
impurity measures [79] that are determined based on the frequency of classes in
the node t are:

• Gini index

Gini Index(t) = 1−
n∑
j=1

[p(j|t)]2 (2.6)

• Entropy

Entropy(t) = −
n∑
j=1

p(j|t) ∗ log2 p(j|t) (2.7)

where n is the number of classes and p(j|t) is the frequency of class j in the node
t.

In order to choose the best attribute for the node splitting, each attribute is
tested. Let the parent-node have N instances which are divided into l children-
nodes, and a child i has a Ni instances (i = 1, 2, ..., l). The difference between the

14

CHAPTER 2. DATA MINING METHODS

impurity of the parent-node and his children-nodes, called gain [79], can be used
to determine the best attribute. Gain is defined as:

∆ = I(parent_node)− I(children_nodes) =

I(parent_node)−
l∑

i=1

Ni

N
∗ I(childi_node)

(2.8)

where I is the used measure for the impurity of a node.
Overfitted models are usually complex. The complexity is reflected in the depth

of decision trees, and the number of leaves. Complex trees have a large depth
and a large number of leaves. Also, in overfitted decision tree models, the leaves
often have a small number of instances. To prevent obtaining overfitted models,
i.e. building too complex model, two approaches commonly used in decision tree
algorithms are:

• Prepruning the tree, i.e. defining criteria when to stop splitting the nodes,
such as maximum depth of a tree, minimal number of instances that have to
be in a non-terminal node so it can be split, the minimal number of instances
that have to be in a leaf in order to split its parent, minimal gain that has
to be between the node and its children in order to split a node, etc.

• Post-pruning the full-grown tree. Using a bottom-up approach, the tree is
pruned by replacing weak subtrees of non-terminal nodes if this increases the
gain. A subtree is replaced with a leaf or the most frequently used branch.
The majority class of the instances is assigned to a new leaf. Different
strategies for post-pruning have been proposed [79].

C4.5/C5.0

Quinlan proposed C4.5 algorithm [71] as a successor of the ID3[70] algorithm.
C4.5 uses entropy as an impurity measure for node splitting. The disadvantage of
entropy is that it favours categorical attributes with a large number of values. To
overcome this problem, the gain ratio is used as a split criterion. The gain ratio
takes into account the number of children-nodes when choosing the best attribute.
If the parent-node has N instances which are devided into l children-nodes, where
a child i has Ni instances (i = 1, 2, ..., l), gain ratio is defined as:

∆ratio =
∆

−
∑l

i=1
Ni

N
∗ log2 Ni

N

(2.9)

15

CHAPTER 2. DATA MINING METHODS

where ∆ is gain (see Equation 2.8). Node with a test based on categorical at-
tribute can be split using (a) one branch for one value or (b) using one branch for
a group of values. Node with a test based on numerical attribute is split with two
branches; one branch corresponds to condition A ≤ x, while the other corresponds
to condition A > x, where x is the best threshold for splitting the values of at-
tribute A. To overcame overfitting, C4.5 uses a method called pessimistic pruning
in which a subtree can be replaced with (a) a leaf labelled with the most frequent
class or (b) with the most frequently used branch.

The probability of error in a leaf is estimated by using the upper limit of
confidence limits (UCF (N,E)) for the binomial distribution for a given confidence
level CF , where N is the number of instances in a leaf, and E is the number
of incorrectly classified instances in a leaf. The predicted number of incorrectly
classified instances for a leaf with N instances is UCF (N,E) ∗ N . The predicted
number of incorrectly classified instances by a subtree is a sum of the predicted
number of incorrectly classified instances by its branches. During the processing
of the subtree in the pruning phase, the estimated error is calculated for the whole
subtree as the sum of the estimated errors of its branches, and for the leaf which
would be obtained by the subtree’s pruning. If the number of estimated errors
after pruning is smaller or the same, the subtree is pruned to a leaf. Also, the
contribution to the estimated error reduction is checked if the subtree is replaced
with one of its branches. If replacing a subtree with a branch or leaf contributes
to the reduction of the estimated error, a subtree is replaced with a branch or leaf,
depending on what contributes the most. Pruning is done from leaves to the root.

Quinlan also proposed algorithm C5.0, the successor of algorithm C4.5. New
functionalities are added in C5.0, such as the usage of boosting technique and
cost-matrix. Detailed information about the implementation of C5.0 algorithm in
software SPSS Modeler can be found in [47].

CART

CART (Classification And Regression Trees) [9, 35] was developed by Breiman
and his team. In CART, the target attribute can be categorical or numerical. In
classification, CART can use Gini criterion, Entropy criterion or Twoing crite-
rion [35]. Non-terminal nodes are split using two branches. For numerical input
attributes, the best threshold for splitting is sought among the attribute values.
Values of a categorical attribute are grouped into two parts and one branch is

16

CHAPTER 2. DATA MINING METHODS

assigned to each part. Categorical values are grouped in a way that gives the
greatest increase in impurity. During the model building, a decision tree is built
to the full size and then post-pruning is applied using the minimal cost-complexity
algorithm. Cost-complexity measure for the decision tree T is defined as

Rα(T) = R(T) + α|T | (2.10)

where R(T) is the cost of the tree calculated using the training dataset, |T | is
the number of leaves, and α is a penalty for each leaf. In the pruning phase, the
α initially has a value of 0, and then in each step, the α is increased. When α

increases, the weakest node is cut off in order to reduce Rα(T). The process is
executed in iterations until a decision tree containing only the root is obtained. A
sequence of pruned decision trees, obtained in each iteration, is saved. The first
element of the sequence is a fully grown tree (for α = 0), and the last element is
a tree containing only the root (for the greatest α). The decision tree that has
the best cost-complexity on a validation set among the trees in the sequence is
chosen as the optimal tree.

In the implementation of the CART algorithm, the user can specify values for
pre-pruning parameters which define when to stop growing the decision tree, such
as:

• maximum tree depth - the tree can grow until it reaches the specified maxi-
mum tree depth;

• minimal instances for spliting - minimal number of instances which are re-
quired to be in a node so it can be split;

• minimal instances in a leaf - minimal number of instances which are required
to be in each leaf.

CART algorithm includes a mechanism for class balancing when deciding which
class will be assigned to the node by comparing the frequency of each class in a
node with the frequency of a class in a root.

Cost-matrix can be specified and is incorporated in an assignment of a class to
a node, as well as in the process of building the model if a Gini index is used as
an impurity measure.

Detailed information about the original definition of an algorithm can be found
in [9]. Information about the implementation of CART algorithm in software SPSS

17

CHAPTER 2. DATA MINING METHODS

Modeler can be found in [47] and detailed information about the implementation
in Python library Scikit-learn can be found in [23].

CHAID

CHAID (CHi-squared Automatic Interaction Detection) [55] is a method that uses
the statistical significance test as a criterion rchangewhen choosingfor selection
of the attribute for node splitting during the tree growing phase. Chi-squared
test is used for classification. The algorithm uses only categorical attributes, so
continuous attributes need to be transformed into ordinal attributes.

In the statistical significance test for attribute X, the null hypothesis of in-
dependence of attribute X and target attribute Y is tested using a contingency
table in which values of attribute X are rows and classes in target attribute Y are
columns.

Before the selection of the best attribute for node splitting, similar values of
each attribute X are merged. The similarity of attribute values is defined based on
their statistical difference with respect to the target attribute. The result obtained
by merging the values of an attribute is called a compound value.

Until the number of different values in the attribute is greater than two and
as long as there are similar values according to the statistical test do:

• Find the most similar pair of values of attribute X with respect to the target
attribute, i.e. according to the p-value. If the obtained largest p-value is
greater than the specified threshold for merging, merge the values into a new
group (new compound value). If an attribute X is ordinal, only contiguous
values can be merged, while for nominal attributes any two values can be
merged.

• If the new compound value consists of three or more original values, find
the best binary split according to the statistical test, i.e. with the smallest
p-value. If the p-value is less than the specified threshold for splitting, split
the compound value into two parts.

If the number of instances of any of the obtained (compound) attribute values
is less than the specified threshold, that value is merged with the most similar
(compound) value according to the statistical test.

18

CHAPTER 2. DATA MINING METHODS

After merging the values for each attribute according to the statistical test, the
best attribute for splitting the node based on the adjusted p-value of the statistical
test is selected. The adjusted p-value is calculated as the product of the p-value
and Bonferroni multiplier. The Bonferroni multiplier calculates the number of
ways in which n values can be split into r groups. For nominal attribute it is
calculated by:

B =
r−1∑
i=0

(−1)i
(r − i)n

i!(r − i)!
(2.11)

One branch is assigned to each value obtained after merging similar original
values of the chosen attribute for splitting the node.

Exhaustive CHAID [47] is an improvement of algorithm CHAID. During the
merging values of an attribute, exhaustive CHAID merge values of the attribute
until only two compound values are left. Then it chooses the best split from the
history of merging the groups of values and computes an adjusted p-value for it.

In the implementation of CHAID and Exhaustive CHAID algorithms, users
can specify values for prepruning parameters which define when to stop growing
the decision tree, same as for CART. In the implementation can be used techniques
for boosting, bagging and cost-sensitive learning.

More details about the implementation of algorithm CHAID and Exhaustive
CHAID can be read in [47].

SPRINT

SPRINT (Scalable PaRallelizable INduction and decision Trees) [78] is a decision-
tree based algorithm that was designed with aims: (a) to overcome problems of
decision-tree based algorithms which required that the whole or part of the training
dataset be stored in memory and (b) to be easily parallelized. To accomplish
these aims, SPRINT uses special data structures: one-time sorted attribute lists
and class histograms. Those data structures are used for finding the best splitting
of the node for each attribute. If the attribute lists can not fit in memory, they
are placed on a disk. In the growing tree phase, SPRINT uses the Gini index as
an impurity measure and binary splits of nodes. Minimum Description Length
principle is used for the pruning.

19

CHAPTER 2. DATA MINING METHODS

Ensemble methods

Random Forests is an ensemble method that uses decision trees for building clas-
sification models. Random Forests can be used to reduce model variance. For
training the decision tree models, a special vector of random values from a fixed
probability distribution is generated in order to obtain less correlated models.
Based on how the random values are used, different Random Forests approaches
exist [79]:

• Forest-random input selection (Forest-RI). In the tree-growing phase for each
model, F attributes are randomly selected from a set of attributes in a pro-
cess of splitting the node. The best attribute for node splitting is determined
by processing only F extracted attributes. Each decision tree is constructed
without pruning in order to reduce bias. If F is small, the obtained trees are
less correlated, but the less accurate trees are obtained. As a compromise, F
is usually determined as F = log2(k)+1, where k is the number of attributes
in a dataset.

• Forest-random linear combinations (Forest-RC) is used when the number of
attributes in a dataset is small. In order to increase the number of attributes,
for each node, F new attributes are created as a linear combination of L
randomly selected original attributes. The coefficients of original attributes
in linear combinations are randomly generated from range [−1, 1] using a
uniform distribution. The best attribute for node splitting is chosen among
the created F new attributes.

• At each node, the attribute for splitting is randomly chosen among the best
F attributes.

XGBoost Tree is an ensemble method that uses gradient boosting technique
with a decision tree algorithm (usually CART) as a base[12].

Information about the implementation of Random Forests and XGBoost Tree
in software SPSS Modeler can be found in [47] and information about the im-
plementation of Random Forests in Python library Scikit-learn can be found in
[23].

20

CHAPTER 2. DATA MINING METHODS

Artificial neural networks
The artificial neural network classification model simulates the process by which
the human brain learns[79, 3]. In short, the human nervous system consists of cells
called neurons. Information is transmitted between neurons by special connections
called synapses. The human brain learns by changing the strength of the synaptic
connection between neurons caused by external stimuli.

Analogous to the human brain, artificial neural networks consist of calculation
units called neurons. In general, each neuron has inputs, a calculation function,
and an output[79]. The inputs receive data from other neurons and a weight
is assigned to each input. Using the assigned weights , input values and the
associated function, called activation function, the result is calculated and passed
on to other neurons. Neurons are divided into layers. Neurons in the input layer
receive instance data from the dataset and pass values to other neurons. The
output layer contains one or more neurons that calculate the predicted values for
the instance given as input. A neural network can contain zero or more hidden
layers between the input and output layer. A hidden layer consists of one or more
neurons called hidden neurons. Neural networks with hidden layers are called
multilayer neural networks.

Based on how the neurons are connected in the hidden layers, neural networks
can be divided into[79, 41]:

• feed-forward neural networks in which neurons of one layer are connected
with neurons of the next layer, i.e. networks whose connections are acyclic.
An example of a feed-forward neural network is a Multilayer Perceptron.

• recurrent networks in which neurons of one layer are connected with neurons
from the same layer as with neurons from previous and next layers, i.e.
networks with cyclic (recurrent) connections.

The feed-forward neural network allows only the flow and processing of in-
formation from input to output, without the possibility of returning the obtained
output to the model and use of it in the following predictions. Loops in a recurrent
neural network allow the use of information from previously read data in addition
to the data currently being processed [19]. A recurrent neural network is suitable
for sequence classification problem [42]. Elements of a sequence are processed one
by one by a recurrent neural network, and the prediction of the element currently

21

CHAPTER 2. DATA MINING METHODS

being processed depends on the information of previously read elements within
the sequence.

Multilayer Perceptron

The multilayer Perceptron is suitable for classification instances in a dataset with
the fixed-length sliding window format. In the input layer, one neuron corresponds
to one attribute. As activation function of neurons, the following functions are
commonly used [79, 37]:

• Identity

f(x) = x (2.12)

• Logistic sigmoid

f(x) = 1/(1 + e−x) (2.13)

• Hyperbolic tangent (tanh)

f(x) =
ex − e−x

ex + e−x
(2.14)

• Rectified linear unit (relu)

f(x) = max(0, x) (2.15)

• Scaled Exponential Linear Unit (SELU)

f(x) = λ

α(ex − 1) if x < 0

x if x ≥ 0
(2.16)

where λ = 1.05070098 and α = 1.67326324

Neuron with the assigned activation function f and d inputs x = (x1, x2, ..., xd)

with corresponding weights w = (w1, w2, ..., wd) and bias b, calculates the output
value by formula:

z = f(x ∗ w + b) = f(
d∑
i=1

xi ∗ wi + b) (2.17)

22

CHAPTER 2. DATA MINING METHODS

For the multiclass classification problem with n classes, to each class ci (i =
1, 2, ..., n) is assigned a neuron which output zci is an input to a output neuron.
softmax function is commonly used as activation function of the output neuron:

ŷ = softmax(zc1 , zc2 , ..., ...zcn) = (
expzc1∑n
j=1 exp

zcj
,

expzc2∑n
j=1 exp

zcj
, ...

expzcn∑n
j=1 exp

zcj
)

(2.18)
softmax function transforms values to a vector which values are interpreted as
the probabilities of categorical classes. The values of the vector are in the range
[0,1] and their sum is 1. Class corresponding to the maximum probability value is
assigned to an input instance. Illustration of a Multilayer Perceptron is shown in
Figure 2.5.

Input

layer

Zc1

x2

x1

xd

bias

f

f

f

f

bias

Hidden

layer

Output

layer

softmax

Zc2

Zcn

Figure 2.5: Illustration of structure of Multilayer Perceptron

When a model is trained using neural networks, the cost (loss) function must
be defined. A model training aims to minimize the cost function by adjusting
the weights in a neural network. In classification problems with multiple classes,
cross-entropy loss is used as cost function:

Cross− entropy = − 1

N

N∑
i=1

yi ∗ log(ŷi) (2.19)

23

CHAPTER 2. DATA MINING METHODS

where N is the number of instances in a dataset, yi is a vector of true probabilities
of classes for an instance i, and ŷi is a vector of estimated probabilities of classes
by model. y is a vector with a value 1 for the true class of an instance and 0 for
other classes.

Different gradient-based algorithms can be used for the optimization of the
cost function, such as Adam [56]. For the computation of the weights, the back-
propagation technique can be used.Each instance is processed in two phases in
backpropagation technique[79]:

• forward phase computes ŷ for instance being processed using previously ob-
tained weights.

• backward phase updates the weights in order to improve the ŷ for instance
being processed. The weights are updated from the last layer to the first
layer. Errors of neurons in layer i+1 are used to estimate errors and weight
corrections of neurons in a layer i.

Detailed information about the implementation of Multilayer Perceptron in
software SPSS Modeler can be found in [47] and information about the imple-
mentation of Multilayer Perceptron in Python library Scikit-learn can be found in
[23].

LSTM-Bidirectional recurrent neural networks

Recurrent neural networks (RNNs) are suitable for sequence classification problem
[42]. RNNs use the datasets in sequence data format for building models. Target
values associated with instances are sequences of class labels. Each element in an
input sequence is associated with one class label in a target sequence. In RNNs
terminology, the element in an instance is called timestep. The elements from the
input sequence are processed one by one. Depending on the architecture, the class
of the element being processed can be determined in the same step, or after a
delay of several steps, i.e. after processing the succeeding few elements. For each
element et for t = 1, ..., n in a sequence, the equations used in calculations in the
forward phase can be summarized with [41]:

at = b+Wht−1 + Uet (2.20)

24

CHAPTER 2. DATA MINING METHODS

ht = f(at) (2.21)

ot = c+ V ht (2.22)

ŷ = softmax(ot) (2.23)

where a is input to hidden nodes, h is output of hidden nodes (h0 is initial state),
o is input to output node, b and c are bias vectors, U is the weight matrix for
connections between input nodes and hidden nodes, W is the weight matrix for
connections between hidden nodes and V is the weight matrix for connections
between hidden and output nodes. f denotes the activation function of hidden
nodes, and softmax is used as the activation function of the output node.

Recurrent connections enable the influence of elements on positions from 1 to
i−1 in a sequence on the decision of the assigned class for an element on a position
i in a sequence. If the information of following elements (on the position from i+1

to n) in a sequence can be useful for the prediction of a class label for element i,
bidirectional recurrent neural network (BRNN) [77] can be used. BRNN provides
information about all past and future elements in a sequence for predicting the
class label at position i by using two recurrent hidden layers: (a) forward layer
for processing elements in a sequence in the forward direction, i.e. from position
1 to position n, (b) and backward layer for processing elements in a sequence in
the backward direction, i.e. from position n to position 1.

Nodes in the input layer are connected with neurons in the forward layer and
neurons in the backward layer. Neurons from forward and backward layers are
not connected. Neurons in a forward layer are connected with the neurons in the
output layer, and neurons in a backward layer are connected with the neurons in
the output layer. Neurons in the output layer combine the outputs from neurons
in forward and backward layers.

The general structure of BRNN unfolded for three elements in a sequence is
illustrated in Figure 2.6. A forward layer is presented with a blue rectangle and a
backward layer is presented with a green rectangle.

Summarized steps in training the BRNN are proposed in [77]:

25

CHAPTER 2. DATA MINING METHODS

Input

Output

LSTM

LSTM

Input

Output

LSTM

LSTM

Input

Output

LSTM

LSTM

i-1 i i+1

Forward

Backward

Figure 2.6: General structure of BRNN unfolded for three elements

1. Forward phase: Run all elements through the BRNN and calculate the out-
put values.

• Do forward phase for a forward layer for elements on a position from 1
to n.

• Do forward phase for a backward layer for elements on a position from
n to 1.

• Do forward phase for the output layer.

2. Backward phase: Calculate the part of the objective function derivative for
each element.

• Do backward phase for the output layer.

• Do backward phase for a forward layer for elements on a position from
1 to n.

• Do backward phase for a backward layer for elements on a position from
n to 1.

3. Update weights phase.

When propagating over many elements in a sequence, the problem which can
occur is that gradients tend to either vanish or explode [41]. As a result, learning
dependencies between distant elements in a sequence is difficult. Long Short-Term

26

CHAPTER 2. DATA MINING METHODS

Memory (LSTM) [45] architecture was proposed to overcome this problem. LSTM
network is like RNN/BRNN, except that the LSTM network contains memory
blocks instead of classical neurons in hidden layers.

Each memory block contains one or more self-connected memory cells and
three units called gates (input, output and forget gates) which enable the storage
and use of information on previously processed elements. An illustration of the
memory block with one memory cell is shown in Figure 2.7.

Input, output and forget gates are summation units that receive data from
and outside the block. Each gate has activation function h . The activation func-
tion is chosen so that the gate activations are between 0 and 1, where 0 denotes
a closed gate and 1 an open gate. Cell input and output have activation gates
g and h, respectively (see Figure 2.7). A cell doesn’t have an activation func-
tion. Multiplication units (small black circles) of input and output multiply the
input and output of the cell, while the multiplication unit of forget gate multiplies
the cell previous state. Output from the block is the result of the output gate
multiplication unit.

htpgxt

it ot

rt

ct

f

xt

f

xt

f

xt

Cell

Forget gate

Input gate Output gate

Figure 2.7: Memory block with one memory cell

27

CHAPTER 2. DATA MINING METHODS

Corresponding equations used in forward pass for element t (for t = 1, 2, ..., n)
are [63, 40] :

it = f(Wxixt +Whiht−1 +Wcict−1 + bi) (2.24)

rt = f(Wxrxt +Whrht−1 +Wcrct−1 + br) (2.25)

ct = rtct−1 + itg(Wxcxt +Whcht−1 + bc) (2.26)

ot = f(Wxoxt +Whoht−1 +Wcoct + bo) (2.27)

ht = otp(ct) (2.28)

where xt is current input vector, f is activation function of gates, i, r, o and c are
input gate, forget gate, output gate and cell activation vectors, respectively; h is
hidden vector (output of a block) and b are bias vectors. W are weight matrices,
where Wkj are weights of connections between k and j. g is a cell input activation
function, and p is cell output activation function.

Accuracy of a RNN is calculated as:

Accuracy = 1− 1

L

n∑
i=1

hd(ŷi, yi) (2.29)

where n is the number of instances in a dataset, yi is a target sequence of i-th
instance, ŷi is predicted sequence for i-th instance, hd is a hamming distance and
L is the sum of lengths of target sequences (L =

∑n
i=1 |yi|).

2.4 Clustering
Let a dataset D contains instances described by n attributes X = (X1, X2, ..., Xn).
In general, the clustering is the grouping of the instances from dataset D based
only on the attributes X with the aim that the instances of one group are as
similar to each other as possible and as different from instances of other groups as
possible. One group of instances obtained by clustering is called a cluster.

Numerous clustering algorithms have been proposed. Some of them can be
divided into the following groups based on their properties [79]:

28

CHAPTER 2. DATA MINING METHODS

• Representative or prototype-based algorithms: each cluster is described using
a representative point. The representative point of a cluster is usually pre-
sented as the point with properties determined using cluster instances or
is a selected instance from the cluster. Algorithms of this type require an
iterative pass through a dataset in order to better determine the representa-
tive of a cluster. An instance is assigned to the cluster whose representative
point is the most similar to it.

• Hierarchical clustering algorithms: a result of clustering is described with a
hierarchical tree. Each tree leaf presents an individual instance, and the root
of a tree contains all instances in a dataset, i.e. it presents one cluster with
all instances. Each non-terminal node contains all instances from its child-
nodes. There are two approaches for building a hierarchical tree: bottom-up
and top-down. In a bottom-up approach, initially, each instance is a separate
cluster. In each step, the two most similar clusters are merged. In the end,
all instances are in one cluster (root-node). In a top-down approach, initially,
all instances are in one cluster (root-node). In each step, a cluster with the
least similar instances is divided into two clusters. In the end, each instance
is a separate cluster. Usually, the number of desired clusters, that will be the
result of clustering, is determined after the construction of the hierarchical
tree.

• Density-based algorithms: the goal is to find dense regions of instances that
are separated by space without instances or with sparse regions of instances.
Each found dense region is a cluster.

• Graph-based algorithms: the dataset is presented as a graph. Instances are
presented as nodes, and connections among instances are presented as links
between nodes. A cluster is a group of nodes that are mutualy interconnected
and not connected with other nodes.

Kohonen Self-Organizing Feature Map
Kohonen Self-Organizing Feature Map (SOFM or SOM) [57] is an algorithm based
on neural networks and each cluster is described with a prototype. As a result
of clustering, a neural network with a fully connected input and output layer
is obtained. In the output layer, one node presents one centroid of a cluster

29

CHAPTER 2. DATA MINING METHODS

described as a weight vector of input nodes. The activation of an output node
is the proximity of an instance and corresponding centroid. Nodes in the output
layer are presented in a form of a lower-dimensional lattice (usually 2-dimensional).
Each node is labelled with an n-tuple which presents the node’s coordinates in a
lattice. SOM maintenances the topology between input instances and neurons in
an output layer, i.e. input instances that are similar will be assigned to nearby
neurons in the lattice.

x2x1 xnInput layer

Output layer

Figure 2.8: Example of Kohonen SOM

The main steps in the training phase of SOM are:

• Initialization of weights/centroids of neural network.

• Do in cycles until centroids do not change or the stop criteria (i.e. maximum
number of cycles) is met.

– For each instance i in a dataset, do:

∗ Find the most similar centroid c to the instance i.
∗ Update the weights of c in order to move it closer to i.
∗ Update the weights of centroids that are nearby the centroid c

based on the specified threshold about the neighbourhood.

• Return the obtained centroids of clusters.

30

CHAPTER 2. DATA MINING METHODS

For training the model using Kohonen SOM, following parameters should be
defined:

• how to calculate proximity between an instance and centroids. Euclidean
distance is comonly used, and calculated as:

Euclidean(i, c) =

√√√√ n∑
j=1

(ij − cj)2 (2.30)

where i is an instance, c is a centroid, and n is the number of input attributes
by which the dataset is described.

• how is defined the neighbourhood of a centroid, i.e. nearby centroids which
are updated along with the closest centroid. Chebychev distance is com-
monly used for the definition of a neighbourhood and is calculated as the
maximum distance on any dimension of a grid on which centroids are placed.

• neighbourhood size. Centroids on the distance less than defined neighbour-
hood size from the closest centroid of an instance are updated, besides the
closest centroid.

• η learning rate parameter which determines how closest centroids will be
moved toward the instance being processed. The weights of the centroid are
change based on the formula:

δc = η(c− i) (2.31)

where c is a centroid and i is an instance being processed. η usually decreases
as the number of completed cycles increases.

IBM SPSS Modeler supports Kohonen SOM[47].

TwoStep
Chiu and his team [13] developed a scalable algorithm that efficiently handles
dataset with both numerical and categorical attributes. The clustering procedure
has two phases:

31

CHAPTER 2. DATA MINING METHODS

• Pre-clustering of instances in order to find dense regions in terms of summary
statistics. Finding dense regions of instances is done in one pass through
dataset and information of them is saved as summary statistics called cluster
features in a data structure called CF-tree. CF-tree is constructed in this
phase. The leaves of CF-tree represent the dense regions. The non-leaf
nodes are used as signposts to rout the instance to the dense region to which
it belongs according to the properties. Each node is described with cluster
features that contain the number of instances described by node, mean and
variance of each numerical attribute, and counts for values in categorical
attributes.

• Hierarchical clustering is performed on obtained dense regions in the pre-
clustering phase. Obtained dense regions are initial clusters. The two most
similar clusters are merged in each step until all dense regions are in one
cluster. The decision which two clusters will merge in one step of hierarchical
clustering is based only on the cluster features.

The distance measure used to determine the distance between two clusters is based
on the log-likelihood function. Let ai (i = 1, 2, ..., w) be categorical attribute
and bj (j = 1, 2, ..., q) be numerical attribut of a dataset, and Cl (l = 1, 2, ...k)
is a cluster. It is assumed that the numerical attributes are within-cluster Cl
independent normal distributed. Mean of a numerical attribute bj within cluster
Cl is µlj, and its variance is σ2

lj. Also, it is assumed that categorical attributes are
indepentend and have normal distribution within cluster Cl.

The distance between two clusters Cr and Cs is defined as:

d(Cr, Cs) = ξr + ξs − ξ⟨r,s⟩ (2.32)

where ⟨r, s⟩ is an id of cluster obtained by merging clusters r and s and ξg(g =

r, s, ⟨r, s⟩) is calculated as

ξg = −ng(
q∑
j=1

1

2
log(σ̂2

j + σ̂2
gj) +

w∑
i=1

Êgi (2.33)

where ng is the number of instances in a cluster g, σ̂2
j is the estimated variance of

the j-th numerical attribute for all instances, σ̂2
gj is the estimated variance of the

32

CHAPTER 2. DATA MINING METHODS

j-th numerical attribute for instances in the cluster g, and Êgi is calculated as

Êgi = −
mv∑
v=1

ngiv
ng

log ngiv
ng

(2.34)

where ngiv is the number of instances in cluster g with the v-th value of the i-th
categorical attribute.

TwoStep uses a two-phase procedure to automatically determine the best num-
ber of clusters when the minimal and maximal number of preferred clusters is
defined.

In the first phase, Bayesian Information Criterion (BIC) is used for a coarse
estimate of the optimal number of clusters. Since the models with small BIC are
considered to be good models, in the first step is calculated the decrease of BIC
for each merging step of hierarchical clustering. As the coarse number of clusters
is chosen the k when a decrease in BIC starts to diminish. In the second phase,
as a criterion for the best number of clusters is used the ratio change in distance,
calculated for each merging step. Merging starts from the estimated number of
clusters in the first phase (from k). The final number of clusters is chosen when
a big difference in the ratio for two consecutive merges occurs. Instead of BIC,
other criteria can be used.

IBM SPSS Modeler supports clustering with TwoStep[47].

33

3 Structural alphabets

3.1 Protein structure
Proteins are organic molecules that have significant and numerous roles in the
functioning of an organism or cell. Some of the protein roles are participation
in the cell structure , regulation of metabolism, protection of the organism from
foreign substances, biological catalysis, transportation of molecules through cell
membranes or blood, etc. By chemical composition, proteins are linear biological
polymers composed of amino acids linked together by peptide bonds. The number
and order of amino acids determine the protein structure and function [4, 14].
In general, an amino acid (see Figure 3.1) consists of amino group (−NH2), car-
boxyl group (−COOH) and R group (residue) attached to the same central carbon
atom (Cα).

C

H

R

COOHNH2

amino

group

carboxyl

group

R

group

Figure 3.1: General structure of an amino acid

Proteins are commonly composed of twenty different amino acids, which have
unique R groups. Depending on the composition of the R group, each amino acid
has unique physicochemical properties, such as the polarity of the R group (non-
polar R group, uncharged polar R group and charged polar R group), aromaticity

34

CHAPTER 3. STRUCTURAL ALPHABETS

and bulk. Each amino acid has a corresponding three-letter and one-letter name.
The list of twenty amino acids is shown in Table 3.1.

Amino acid Abbreviations Molecular formula Linear formula
Alanine Ala A C3H7NO2 CH3 − CH(NH2)− COOH
Arginine Arg R C6H14N4O2 HN = C(NH2)−NH − (CH2)3 − CH(NH2)− COOH
Asparagine Asn N C4H8N2O3 H2N − CO − CH2 − CH(NH2)− COOH
Aspartic acid Asp D C4H7NO4 HOOC − CH2 − CH(NH2)− COOH
Cysteine Cys C C3H7NO2S HS − CH2 − CH(NH2)− COOH
Glutamine Gln Q C5H10N2O3 H2N − CO − (CH2)2 − CH(NH2)− COOH
Glutamic acid Glu E C5H9NO4 HOOC − (CH2)2 − CH(NH2)− COOH
Glycine Gly G C2H5NO2 NH2 − CH2 − COOH
Histidine His H C6H9N3O2 NH − CH = N − CH = C − CH2 − CH(NH2)− COOH
Isoleucine Ile I C6H13NO2 CH3 − CH2 − CH(CH3)− CH(NH2)− COOH
Leucine Leu L C6H13NO2 (CH3)2 − CH − CH2 − CH(NH2)− COOH
Lysine Lys K C6H14N2O2 H2N − (CH2)4 − CH(NH2)− COOH
Methionine Met M C5H11NO2S CH3 − S − (CH2)2 − CH(NH2)− COOH
Phenylalanine Phe F C9H11NO2 Ph− CH2 − CH(NH2) − COOH

Proline Pro P C5H9NO2 NH − (CH2)3 − CH − COOH
Serine Ser S C3H7NO3 HO − CH2 − CH(NH2)− COOH
Threonine Thr T C4H9NO3 CH3 − CH(OH)− CH(NH2)− COOH
Tryptophan Trp W C11H12N2O2 Ph−NH − CH = C − CH2 − CH(NH2)− COOH
Tyrosine Tyr Y C9H11NO3 HO − Ph− CH2 − CH(NH2)− COOH
Valine Val V C5H11NO2 (CH3)2 − CH − CH(NH2)− COOH

Table 3.1: Molecular and linear formulas of 20 amino acids 1

A polypeptide chain is formed by building a peptide bond (C − N) between
two successive amino acids (see Figure 3.2). In a peptide bond, carbon from the
carboxyl group of one amino acid shares electrons with nitrogen from the amino
group of successive amino acid. When a peptide bond is formed, a water molecule
is released. The amino acid sequence without residual parts is called backbone
or main chain. The ends of the backbone are called N-terminus and C-terminus.
N-terminus refers to the end with a free amino group, while the C-terminus refers
to the end with a free carboxyl group.

The structure of a protein chain is described on three levels as primary, sec-
ondary and tertiary structure.

Protein primary structure is determined by a sequence of amino acids linked
by peptide bonds. It is also called an amino acid sequence and is described as a
sequence of one-letter amino acid names in the form A1A2, ..., AN where N is the
number of amino acids in a chain. Amino acids in a sequence are counted from
N-terminus to C-terminus.

Protein secondary structure is deifned by amino acid conformations in a region
of a polypeptide chain. Its states are defined based on spatial patterns of backbone

1Source is http://www.imgt.org/IMGTeducation/Aide-memoire/_UK/aminoacids/formuleAA

35

CHAPTER 3. STRUCTURAL ALPHABETS

C

H

R

C

H

N

H

H
+ C

H

R

C

H

N

H

H

H

H

C

H

R

CN

C

H

R

C

H

N

H

H20

Figure 3.2: Peptide bond (C −N) between two successive amino acids

dihedral angles (ϕ and ψ) and the hydrogen-bonding patterns observed between
carbonyl and amide groups in the peptide backbone. Conformation of protein
backbone can be described with two dihedral angles (ϕ and ψ) per amino acid.
Rotation around N − Cα bond is represented by dihedral angle ϕ, and rotation
around Cα−C bond is represented by dihedral angle ψ (see Figure 3.3). Dihedral
angle ϕ for amino acid at position i in a sequence is determined by coordinates
of atoms Ci−1, Ni, Cαi, Ci, while dihedral angle ψ is determined by coordinates of
atoms Ni, Cαi, Ci, Ni+1.

The standard way for visualization of dihedral angles ϕ and ψ of amino acids
in a protein is by a Ramachandran plot [72]. In Figure 3.4 is the Ramachandran
plot published by Lovell et al. in [33] and it shows the ϕ and ψ angles for 97,368
amino acids.

Secondary structure is described with eight states. Dictionary of Secondary
Structure of Proteins (DSSP) program [53] can be used to assign one of the eight
secondary structure states (310-helix (G), α-helix (H), π-helix (I), β-bridge (B),
β-strand (E), bent (S), β-turn (T) and loop or irregular state (-)) to amino acids
in a protein chain. In the studies, secondary structure is often described with three

36

CHAPTER 3. STRUCTURAL ALPHABETS

Figure 3.3: Illustration of dihedral angles ϕ and ψ [74]

Figure 3.4: Ramachandran plot [33]

instead of eight states: two regular and most common states α-helix and β-sheet
[18], and one non-regular state coil. In Figure 3.4, amino acids belonging to α-
helix are recognized as cluster around ϕ = −57◦ and ψ = −47◦, while amino acids
belonging to β-sheet are recognized as cluster around ϕ = −130◦ and ψ = +140◦.

The three-dimensional or tertiary structure (3D) of a protein is defined by the
coordinates of the amino acid atoms of a polypeptide chain. Protein may consist

37

CHAPTER 3. STRUCTURAL ALPHABETS

of one or more peptide chains. The complex 3D structure of all protein peptide
chains is called quaternary structure. Protein Data Bank (PDB) [7] contains
experimentally determined protein 3D structures.

Determination of the 3D structure of a protein from a secondary structure is
not easy. The initial problem is the absence of the strict rules which define each
of the secondary structure states [69]. A variety of programs based on different
methods have been developed for the assignment of secondary structure states to
the amino acids in a protein. As a consequence, the results of different programs
for assignment the secondary structure states to amino acids in a protein can be
very diverging.

To overcome the difficulties with secondary structure, a new approach for the
description of the 3D structure of the backbone has been introduced [69]. The 3D
structure of the backbone can be described using prototypes that approximate the
local folds that occur in the structure of the protein. Prototypes are determined
based on fragments of consecutive amino acids in polypeptide chains whose 3D
structure is known. The local structure prototypes compose the library of local
protein structures, also called the structural alphabet (SA).

Labels, which are usually letters, are assigned to prototypes of the structural
alphabet. In terms of SA, the 3D structure of a protein backbone is represented
as a sequence of prototype labels. For each L successive amino acids (fragment
of length L) in an amino acid sequence from the N-terminus to the C-terminus, a
corresponding prototype is determined. For most SAs, prototypes are assigned to
overlapping fragments. Representation of the protein chain using SA prototypes
can be viewed as a kind of a compression of the 3D structure of a protein chain
backbone.

The first complex SA was developed by Unger et al. [82] in 1989, and they
demonstrated that protein structures can be approximated by concatenating pro-
totypes of the local structure. In the following years, more than 15 SAs have
been developed to approximate local protein structures. SAs differ in the proper-
ties used to describe the protein backbone (coordinates, distances, torsion angles),
methods used to define them (K-mean clustering algorithms, Kohonen maps, ar-
tificial neural networks, ...) and the number of amino acids in a fragment. Each
SA is defined as a set of N prototypes of L amino acid length. For each SA,
it is important that its prototypes enable precise reconstruction of the protein
structure.

38

CHAPTER 3. STRUCTURAL ALPHABETS

With the increase in the number of prototypes of the structural alphabet,
approximation of the protein structure is better, but the accurate prediction of
protein structure in terms of structural alphabet prototypes is more complicated.
A detailed overview of the structural alphabets is given in [69].

A short description of some of the well-known structural alphabets is given in
section 3.2 Overview of existing structural alphabets. A more detailed overview
of SA Protein Blocks is given in section 3.3 Protein Blocks.

3.2 Overview of existing structural alphabets

Building Blocks
Unger and his team [82] were the first researchers who developed a complex struc-
tural library Building Blocks from proteins with experimental determined struc-
tures in 1989. They suggested that a structural library can be used to analyse
and predict protein structure. Fragments of 6 consecutive amino acids were used
for the definition of prototypes. Their study used a set of 82 proteins determined
with X-ray. Overlapping fragments were extracted from only 4 proteins. Ex-
tracted fragments were used to determine prototypes. In order to calculate the
distance between two fragments, the authors used the best molecular fit (BMF) al-
gorithm by Nyburg [68] or Kabsch [52] for aligning fragments. After aligning, they
calculated normalised root mean square deviation (rms deviation) of Cα atomic
positions. rms deviation was calculated by the equation:

rms Cα atomic positions =

√∑n
i=1 δ

2
i

n− 2
(3.1)

where δi is a distance between two Cα atoms on i-th position in fragments.
Prototypes were selected using a variant of KNN clustering and division of ob-

tained clusters into subclusters in which the maximum distance between members
is 1Å. The total number of obtained subclusters was 103. The central fragments
of obtained subclusters are prototypes, called building blocks. The usefulness of
the obtained building blocks was verified by assigning the closest building blocks
for each fragment in a set of 82 proteins. It was found that at least one block
exists for 76% of fragments at a distance of 1Å, and for 92% of fragments at a
distance of 1.25Å. For the first 60 amino acids of 71 proteins, the average rms

39

CHAPTER 3. STRUCTURAL ALPHABETS

of Cα atomic positions distance between the original proteins and reconstructed
proteins was 7.3Å. Analysis of the relationship between secondary structures and
building blocks showed that many blocks are associated with helices, sheets and
turns, while some are associated with secondary structures’ connections.

Hierarchical ascending clustering using distances
Rooman and co-workers [75] described automatic procedure based on hierarchical
ascending clustering on fragments of fixed length between 4 and 7. To describe a
fragment, they used distances between Cα backbone atoms in a fragment. Dataset
for clustering contained 75 proteins. As a distance measure between fragments,
authors used rms deviation of the inter-Cα distances calculated by the equation:

rms inter-Cα distances =

√√√√ 2

n ∗ (n− 1)

n−1∑
i=1

n∑
j=i

(dxij − dyij)
2 (3.2)

where n is the length of a fragment, x and y are fragments, dxij and dyij are the
Euclidean distances between Cα atoms of amino acid i and j in fragments x and
y.

At first, the authors developed SAs with four prototypes using the clustering
procedure and fragments of fixed length from 4 to 7 amino acids to compare
them with secondary structure classes. Fragment with a minimal rms deviation
in a cluster, considering all other fragments in the same cluster, was chosen as
cluster prototype. In the analysis of obtained SAs using different fragment lengths,
it was noticed that obtained clusters per SA had similar secondary structures
of fragments: the first cluster was associated with helix, second with β-strand,
third with all secondary structures except helix, and fourth with coil and turns.
Later, the clustering procedure was used to demonstrate that structural families
of fragments can be found. As an example, they described structural families
obtained using a combination of clustering procedure and criteria on backbone
dihedral angles on fragments of length 7. The number of fragments in a cluster
was used as a criterion for cutting the hierarchical tree. The used threshold was
50 members. The obtained clusters were divided by using dihedral angles to
obtain subclusters of fragments with dihedral angles in the same domains of the
Ramachandran plot [86]. Some of the obtained prototypes corresponded to known
secondary structures, while some prototypes presented new structural families.

40

CHAPTER 3. STRUCTURAL ALPHABETS

Kohonen feature map with 100 structural motifs
Schuchhardt and co-workers [76] applied a self-organizing Kohonen map to identify
local structural motifs. The study was performed on 9 amino acids long fragments
from 136 proteins. Dihedral angles were used to describe fragments. As a distance
measure between two fragments i1 and i2, root mean square deviation on angular
values (rmsda) was used. rmsda was calculated by the equation:

rmsda =

√∑n−1
k=1(ψ

i1
k − ψi2k)

2 + (ϕi1k+1 − ϕi2k+1)
2

2 ∗ (n− 1)
(3.3)

where n is a length of a fragment.
A neural network with an architecture of 10x10 neurons was used to generate

the Kohonen feature map. Each neuron, which presented one local structural
motif, was described with its position (x, y) in Kohonen map and 16-dimensional
weight vector corresponding to ψ and ϕ angles, which can be visualized with ψ−ϕ
plot (see Figure3.5). The obtained Kohonen feature map is shown in Figure 3.6.

Figure 3.5: Example of ψ − ϕ plot of local structural motif [76]

Obtained structural motifs were compared with the ideal α-helix and β-strand
motifs using rmsda. Ideal α-helix motif was presented using values ϕ = −57◦

and ψ = −47◦, while ideal β-strand motif was presented using ϕ = −139◦ and
ψ = +135◦. The analysis showed the separation of motifs similar to α-helix from
motifs similar to β-strand. Structure motifs similar to the ideal α-helix motif are
located in the upper left corner, while motifs similar to β-strand are in the lower
right corner.

A structural similarity measure was proposed for the comparison of two pro-
teins in terms of constructed local structural motifs. Histogram can be calculated
for each protein based on counting how often each neuron is active for that protein.
The values were normalized in order to have a positive vector v with an absolute
norm equal to one. For two proteins p1 and p2, similarity with range [0, 1] was

41

CHAPTER 3. STRUCTURAL ALPHABETS

Figure 3.6: Kohonen feature map. Each cell presents one local structure motif
shown by ψ− ϕ plot. The colours indicate the frequency of occurrence of an indi-
vidual motif. Light yellow presents many instances and dark red a few instances.
[76]

defined as sim(p1, p2) = 1− 1
2

∑100
i=1 |v

p1

i − vp
2

i |. Proteins with a similar proportion
of the same local structural motifs have large similarity, while proteins with a
different proportion of local structural motifs have a small similarity.

Structural Building Blocks
Fetrow and co-workers [38] developed SA Structural Building Blocks (SBBs) us-
ing autoassociative artificial neural network (autoANN) and K-means clustering.
autoANN was used to reduce the dimensions of input data. Fragments of 7 amino
acids from 116 proteins were used in the study. The fragments were described
using geometry data: 15 Cα distances between non-neighbouring amino acids, 5
virtual bond angles and 4 virtual dihedral angles of the Cα. Geometry data was
encoded. Since Cα distances had bimodal distributions, they were encoded with
two attributes with range [0, 1]. The first encoded attribute was associated with
the first mode of the distribution, and the second encoded attribute was associ-
ated with the second mode of the distribution. For each distance, the value of the
encoded attribute associated with the mode to which distance belonged was set
to a value proportional to the relationship between the distance and the range of
the associated mode. If distance belonged to the first mode, the second encoded

42

CHAPTER 3. STRUCTURAL ALPHABETS

attribute was set to 0, and if distance belonged to the second mode, the first en-
coded attribute was set to 1. Virtual bond angles were normalized to the range
[0, 1]. Each virtual dihedral angle was presented with two attributes: one for the
sine and one for the cosine of the angle. Attributes with sine and cosine of the
angles were normalizes to the range [0, 1].

Autoassociative artificial neural network is a machine learning algorithm that
trains a network to reproduce values of input layer as values of output layer using
a hidden layer with a smaller number of nodes then input layer [59]. Since the
output layer activations depend on the hidden layer activations, the input data’s
important properties are encoded in the hidden layer activation. Authors devel-
oped the autoANN with 8 neurons in the hidden layer, by which the properties
of the fragment described with 43 attributes were encoded with 8 attributes. En-
coded values of fragments were clustered using K-means algorithm and Euclidean
distance into 6 clusters. Each cluster presented one structural building block.
Secondary structures were assigned to amino acids in proteins using DSSP. In the
comparison of the SBBs and frequency of secondary structures at each amino acid
position, it was observed that two SBBs corresponded to helix and sheet classes,
two SBBs were associated with helix caps, and two SBBs were associated with
strand caps.

I-sites
Bystroff and Baker [10] used a combination of sequence-based and structure-based
clustering in order to obtain a structural alphabet. First, they used the algorithm
K-means for sequence-based clustering. The most frequent structure in terms of
backbone torsion angles in a cluster was defined as cluster representative, which the
authors called structure paradigm. The sequence profile (log odds scoring matrix)
was calculated for each cluster using its instances. Using the iterative procedure,
cluster instances with a different structure from a paradigm were excluded, and
the profile was updated. After updating a profile, a dataset was searched for
new instances of a cluster. Using 471 protein sequences for training, fragments of
length from 3 to 15 were extracted and used for clustering. In a sequence-based
clustering authors used similarity measure Dpq calculated by the equation:

Dpq =
∑
ij

log[Pij(p) + α ∗ Fi
(1 + α) ∗ Fi

] ∗ log[
∑

k∈q Pij(k) + α′ ∗ Fi
(Nq + α′) ∗ Fi

] (3.4)

43

CHAPTER 3. STRUCTURAL ALPHABETS

where P is weighted amino acid frequency profile for each position in the dataset;
Pij(p) is frequency of amino acid i in position j of fragment p; Nq is the number of
fragments in a cluster q; Fi is the frequency of amino acid i in the dataset; α = 0.5

and α′ = 1.5 were determined empirically. As a structural similarity between
fragments, the authors used a combination of RMS distance matrix error (dme)
and the maximum deviation in backbone torsion angles (mda). For two fragments
f1 and f2, dme was calculated by the equation:

dme =

√∑L
i=1

∑i+5
j=i−5(α

f1
i→j − αf2i→j)

2

N
(3.5)

where L is the length of fragment f1, αi→j is the distance between Cα atoms
of amino acid at position i and amino acid at position j in a fragment; and mda
was calculated by the equation:

mda(L) = max
i=1,L−1

(∆ϕi+1,∆ψi) (3.6)

The obtained number of clusters was 82 and the structural library was called I-
sites. I-sites library was used for the prediction of the local protein structure based
on sequence-sequence profile comparison. To calculate the prediction accuracy,
the authors compared the torsion angles of 8 amino acid fragments with the true
values. They considered that the prediction was correct if the mda value was less
than 120◦ or if the rmsd was less than 1.4Å. The accuracy of prediction on 55 test
proteins was 50%.

Recurrent Oligomers
Micheletti and co-workers [66] used knowledge-based clustering on fragments of 75
proteins for their research about local motifs. Fragments of length l were described
using Cα coordinates. Coordinate root mean square deviation (cRMS) was used
as a distance measure between two superimposed fragments f1 and f2 with the
Kabsch procedure. cRMS was calculated by the equation:

cRMS =

√∑l
i=1 |

−→r Cα
k (f1)−−→r Cα

k (f2)|2
N

(3.7)

where −→r Cα
k (fi) presents Cα coordinates of k-th amino acid in a fragment fi.

44

CHAPTER 3. STRUCTURAL ALPHABETS

Algorithm 2: Cluster procedure for oligomers
Data: F : set of fargments of length l; crms_cutoff : distance cutoff for

calculating proximity score of a fragment
Result: R: set of representative fragments ordered by proximity score
while While F is not empty do

foreach f ∈ F do
calculate fproximityscore as the number of neighbours within a
crms_cutoff distance

end
Find a fragment r ∈ F with the largest fproximityscore
Declare r as a representative fragment and add it to R
Remove the representative fragment r and all it neighbours within a
crms_cutoff distance from F

end

The procedure used for clustering fragments of length l is described in Algo-
rithm 2.

The authors used a histogram of distances between all fragments of length l

to obtain information about clusters in a dataset. Using the distribution of pair-
distances, they extracted information about the number of clusters and typical
distance within clusters. If a pair-distance histogram has a form of a bell, no cluster
exists in the dataset, while a histogram with clusters has two peaks: a smaller
peak represents the average distance in a cluster, and a larger peak represents the
average distance between two clusters. In the analysis, the authors used fragments
of length between 3 and 10. For each length of fragments except for length 3,
the histogram showed two peaks. With the increasing length of the fragments,
the height of the first peak decreases, which led the authors to conclude that
each fragment represents a separate cluster for very large l. By the analysis of
histograms, they concluded that the intra-cluster distance is about 0.65Å for all
l, so they use it as a crms cutoff in a clustering procedure.

Using clustering procedure for fragment lengths 4, 5, 6, and 7, authors ex-
tracted 28, 202, 932 and 2561 representative fragments (prototypes), respectively.
Prototypes were called oligons. Using the obtained prototypes for protein repro-
duction, the authors showed that proteins could be represented with a few tens of
fragment prototypes of length 5 or 6 with 1Åcrms per amino acid.

For the analysis or correlation between amino acids and oligons, authors subdi-
vided amino acids into four groups (Gly, Pro, hydrophobic and polar amino acids)

45

CHAPTER 3. STRUCTURAL ALPHABETS

and mapped amino acids in fragments to the appropriate group. It was shown
that a correlation between transformed fragments and oligons existed.

Simulated-annealing K-means
Kolodny and co-workers [58] constructed and analysed different size structural al-
phabets based on fixed-length fragments in 200 proteins in order to find structural
alphabets that are accurate and with low complexity. Simulated-annealing K-
means method was used for clustering on non-overlapping fragments. The length
of fragments was between 4 and 7 amino acids. The size of detailed described
libraries was from 4 to 250 prototypes. Fragments of length l were described using
Cα coordinates and crms (equation 3.7) was used as a distance measure between
two fragments. Fragment with the minimal sum of crms among fragments in a
cluster was used as cluster centroid. Obtained SAs were compared by accuracy
and complexity.

Accuracy was measured as the ability of SA prototypes for local-fit and global-
fit approximations on test proteins that were not used in clustering. Local-fit was
measured as the average crms of all fragments of test proteins and their best-fit
prototype in SA. Global-fit was measured as average crms of the reconstructed 3D
protein structure using prototypes of SA and protein native structure. Authors
defined the complexity of a library as s

1
(l−3) were s is a size of a SA, and l is the

length of fragments. Complexity presents the average states per amino acid in a
protein. The complexity of obtained SAs varies between 3.16 and 15 per amino
acid.

The average local crms was below 0.85Å for all obtained SAs, and the average
global crms was below 2.57Å . The best global crms was 0.76Å and was obtained
for SA with fragments of length 5 and size of 225.

Based on the analysis, the authors stated the following conclusions:

• Among SAs of the same length, accuracy of local-fit approximation increase
with the size of SA;

• Among SAs of the same complexity, accuracy of local-fit approximation de-
crease with the length of SA;

• Among SAs of the same complexity, accuracy of global-fit approximation
increase with the length of SA;

46

CHAPTER 3. STRUCTURAL ALPHABETS

• Longer fragments are more accurate since they include more correlation than
shorter fragments;

• Extensive datasets are needed to make reliable SAs for the longer fragments.

3.3 Protein Blocks
One of the most used structural alphabets is Protein Blocks (PBs) [15, 36]. De
Brevern and his team constructed PBs to approximate the structural patterns
that exist in protein backbones and to predict local 3D structure of the back-
bone from the amino acid sequence in the terms of PBs. They used overlapping
fragments of length 5 described with dihedral angles (ψ, ϕ). As a distance mea-
sure between fragments, rmsda (equation 3.3) was used. In the first study [15], a
dataset consisted of 228 proteins was used for prototypes construction. The same
procedure was applied on a dataset consisting of 400 proteins in the second study
[36].

The clustering of fragments was based on the Kohonen map and had two
phases. In the first phase of clustering, only dihedral angles were considered. In
the second phase of clustering, transitions between prototypes (protein blocks) ob-
tained in the first phase were considered. More precisely, the clustering procedure
had the following steps:

1. Kohonen network was trained in C cycles (user-defined parameter) using
fragments described with eight dihedral angles ψ−2, ϕ−1, ψ−1, ϕ, ψ, ϕ+1, ψ+1, ϕ+2

and rmsda as distance measure to obtain B (user-defined parameter) protein
blocks.

2. Proteins in the training set were encoded using the obtained protein blocks
from step 1. Transitions matrix between PBs was calculated using the fre-
quencies of the pairs of consecutive PBs observed in encoded proteins. Train-
ing of the Kohonen network was continued by reading consecutive fragments
in proteins. During the processing of a fragment i, its n (user-defined param-
eter) structurally closest protein blocks by rmsda were found. Then, among
the n structurally close protein blocks, one with the highest transition fre-
quency for the protein block assigned to a previously fragment in a protein
(fragment i-1) was chosen. This step was repeated in C cycles.

47

CHAPTER 3. STRUCTURAL ALPHABETS

3. Optimal number of prototypes was determined using structural similarity
and transition similarity between pairs of PBs. Structural similarity be-
tween two PBs obtained in the previous step was calculated using rmsda,
and transition similarity between two PBs was calculated using transition
probabilities of processed PBs to other PBs. The similarity threshold was a
user-defined parameter. In cycles, from pairs of similar PBs, one PB was
deleted. At the end, the two similar PBs did not exist.

As a result of the described procedure, 16 prototypes (PBs) were selected.
PBs are labeled with letters, from a to p. Each PB is defined by eight dihedral
angles ψ−2, ϕ−1, ψ−1, ϕ, ψ, ϕ+1, ψ+1, ϕ+2. Associated dihedral angles to each PBs
are shown in Table 3.2 and representation of each PB is shown in Figure 3.7.

PB ψ−2 ϕ−1 ψ−1 ϕ ψ ϕ+1 ψ+1 ϕ+2

a 41.14 75.53 13.92 -99.80 131.88 -96.27 122.08 -99.68
b 108.24 -90.12 119.54 -92.21 -18.06 -128.93 147.04 -99.90
c -11.61 -105.66 94.81 -106.09 133.56 -106.93 135.97 -100.63
d 141.98 -112.79 132.20 -114.79 140.11 -111.05 139.54 -103.16
e 133.25 -112.37 137.64 -108.13 133.00 -87.30 120.54 77.40
f 116.40 -105.53 129.32 -96.68 140.72 -74.19 -26.65 -94.51
g 0.40 -81.83 4.91 -100.59 85.50 -71.65 130.78 84.98
h 119.14 -102.58 130.83 -67.91 121.55 76.25 -2.95 -90.88
i 130.68 -56.92 119.26 77.85 10.42 -99.43 141.40 -98.01
j 114.32 -121.47 118.14 82.88 -150.05 -83.81 23.35 -85.82
k 117.16 -95.41 140.40 -59.35 -29.23 -72.39 -25.08 -76.16
l 139.20 -55.96 -32.70 -68.51 -26.09 -74.44 -22.60 -71.74
m -39.62 -64.73 -39.52 -65.54 -38.88 -66.89 -37.76 -70.19
n -35.34 -65.03 -38.12 -66.34 -29.51 -89.10 -2.91 77.90
o -45.29 -67.44 -27.72 -87.27 5.13 77.49 30.71 -93.23
p -27.09 -86.14 0.30 59.85 21.51 -96.30 132.67 -92.91

Table 3.2: Protein Blocks reference angles [15])

To calculate average rmsd in clusters, Cα coordinates for each prototype were
constructed using associated dihedral angles. The most frequent PB m had the
smallest rmsda (15◦), while the PB j with the smallest frequency had the largest
rmsd (0.83Å). The average rmsda in obtained clusters was 30.1◦.

Based on the analysis of the relationship between PBs and 3-state secondary
structures of their amino acids, the authors made a coarse classification of PBs.

48

CHAPTER 3. STRUCTURAL ALPHABETS

Figure 3.7: Representation of 16 Protein Blocks obtained with clustering procedure
[27]. Carbon atoms are represented in grey, oxygen atoms in red and nitrogen
atoms in purple.

The most frequent PBs m and d correspond to regular secondary structures α-
helix and β-sheet, respectively. Less frequent PBs (from g to j) correspond to the
coil, while the others correspond to caps of α-helix and β-sheet. The frequency,
average rmsd, average rmsda and corresponding secondary structure for each PB
obtained in [36] are shown in Table 3.3.

Protein with a known 3D structure can be translated to a sequence of PBs
by assigning a PB to every five consecutive amino acids in a chain using rmsda
criteria (see Figure 3.8 for the illustration of translation). To each fragmet of
five consecutive amino acids, with centre amino acid at position i and dihedrals
(ψi−2, ϕi−1, ψi−1, ϕi, ψi, ϕi+1, ψi+1, ϕi+2), a PB with the lowest rmsda is assigned.
Besides the 16 PBs, the PB sequence of a protein can contain a letter Z at any
position i which indicates that for a fragment of five amino acids with the centre
amino acid at position i dihedral angles can not be calculated. Coding of protein
chains to a sequence of PBs based on PDB data can be done using the Pbxplore
tool [27].

Each amino acid in a protein is associated with five protein blocks (except the
first two and the last two amino acids in a sequence). Approximate angles of an
amino acid are calculated as the average value of the associated angles from the
five protein blocks.

49

CHAPTER 3. STRUCTURAL ALPHABETS

PB frequency(%) rmsd(Å) rmsda (◦) secondary structure
a 3.89 0.46 45.2 N-cap β
b 4.41 0.47 42.5 N-cap β
c 8.12 0.51 38.4 N-cap β
d 18.85 0.41 29.7 β
e 2.45 0.71 40.9 C-cap β
f 6.68 0.40 37.5 C-cap β
g 1.15 0.60 50.6 mainly coil
h 2.40 0.46 47.0 mainly coil
i 1.86 0.41 43.4 mainly coil
j 0.83 0.83 49.0 mainly coil
k 5.45 0.3 35.9 N-cap α
l 5.46 0.53 32.5 N-cap α
m 30.22 0.31 15.0 α
n 1.99 0.31 26.8 C-cap α
o 2.77 0.48 38.3 C-cap α

p 3.47 0.47 43.8 C-cap α /
N-cap β

Table 3.3: Description of Protein Blocks [36]. For each protein block, its frequency,
average rmsd between its constructed Cα coordinates and cluster members in a
training set, average rmsda between its dihedral angles and dihedral angles of
cluster members in a training set and coarse classification based on corresponding
secondary structures in which protein block most frequently occurs are presented.

LPAPLTNDPTAIGPV...ATFLTRLRSLP...RLLGS

ZZklmmmmkbgcjdd......kaccdddf...dddZZ

Figure 3.8: Illustration of translation of the amino acid sequence to PB sequence

Besides for the description of the 3D protein backbone, SA Protein Blocks is
applied in other studies in bioinformatics, such as superimpose protein 3D struc-
tures [65, 22, 25], mine protein structures [65], define binding sites [17], and also
to analyse local conformation of disorder proteins (or regions) [30].

50

CHAPTER 3. STRUCTURAL ALPHABETS

Predictors for Protein Blocks
Several predictors of Protein Blocks from an amino acid sequence have been de-
veloped since 2000.

Bayesian Probabilistic Approach

De Brevern and his team developed the first PBs predictor as a part of the devel-
opment process of SA Protein Blocks [15]. Their PBs predictor was based on the
Bayesian probabilistic approach. Proteins in the dataset used for the construction
of SA PBs were coded into PBs sequences. The occurrence matrix of amino acids
for sequence window of length 15 (7 amino acids on the left and 7 amino acids
on the right of amino acid to which PB is assigned) was calculated for each PB.
Conditional probability P (aai in j/PBy) was calculated for each of twenty amino
acids (aai, i ∈ [1, 20], PB y (y is from a to p) and position j in a sequence window
(j ∈ [1, 15]).

In the PBs prediction process for a given amino acid sequence, for each sequence
window Xs (for an amino acid in a position s in amino acid sequence, seqence
window is (aas−7, , ..., aas−1, aas, aas+1, ...aas+7)) probability of belonging central
amino acid (aas) to a PB y was calculated using Bayes’ theorem by the equation:

P (PBy/Xs) =
P (Xs/PBy) ∗ P (PBy)

P (Xs)
(3.8)

P (PBy) is the probability of occurrence of PB y in a training dataset. P (Xs) is
the probability of occurrence of sequence Xs in a training dataset, calculated as a
product of frequencies of its amino acids. P (Xs/PBy) is a conditional probability
of occurrence of window sequence Xs in window sequences in which central amino
acid belongs to PBy. P (Xs/PBy) was calculated by the equation:

P (Xs/PBy) =

j=7∏
j=−7

P (aaj/PBy) (3.9)

where P (aaj/PBy) is a probability of occurrence of amino acid of type aa at the
position j in window sequences belonging to PBy and can be calculated using
occurrences matrices.

51

CHAPTER 3. STRUCTURAL ALPHABETS

To determine the optimal PB for a sequence window Xs, the authors used the
ratio Ry defined as

Ry =
P (PBy/Xs)

P (PBy)
=
P (Xs/PBy)

P (Xs)
(3.10)

For a window sequence Xs, a PB with the highest Ry was chosen as optimal.
The accuracy (Q16) of the PBs prediction on the test set was 34.4%.

To improve the prediction of PBs, the authors developed sequence families,
which are based on the idea that one PB may be associated with different types of
sequences (1 Protein Block - n Sequences). Using clustering procedure, a set of se-
quences corresponding to each protein block was further divided into f groups. For
each sequence family l of a protein block y, occurrence matrix PBl

y was calculated.
Briefly, the clustering procedure had the following steps:

1. For each PBy and its group of sequence fragments (l), occurrence matrix
PBl

y was initialized with the amino acid frequencies of PBy. In order to
obtain different matrices per group, random noise was added to each.

2. Each sequence fragment of PBy was compared with each obtained occurrence
matrix PBl

y and score Ryl was calculated. Sequence fragment was assigned
to a sequence family with the max score. The occurrence matrix of the
sequence family with the best score was updated, taking into account the
processed fragment’s amino acids.

Using sequence families, the Q16 of the prediction was 40.7%. Definition of
sequence families was further improved in [36] by using the larger database (450
proteins) and Q16 as an additional criterion in the learning and selection of the
optimal sequence families. The number of sequence families per PB was between 1
and 6. The Q16 of the prediction was improved to 48.7%. Calculated Q16 and Q14

for used Bayesian approaches in [15, 36] are shown in Table 3.4. Q14 is the accuracy
of predictor without taking into account two most frequent Protein Blocks (PBs
m and d).

Dual-layer model

Dong and his team designed a dual-layer model for PBs prediction [16]. PSSMs
generated by PSI-BLAST for proteins in the dataset were used as input to a model.
One instance in a dataset is PSSM information of a window sequence of length

52

CHAPTER 3. STRUCTURAL ALPHABETS

Accuracy Bayesian approach
without SFs

Bayesian approach
with SFs

Bayesian approach
with improved SFs

Q16 (%) 34.4 40.7 48.7
Q14 (%) - 36.5 37.4
Table 3.4: Accuracy of the PBs prediction using Bayes approaches [15, 36]

15. Each amino acid in a window sequence was described with 21 values (one
per 20 amino acid types and one indicator of whether the amino acid is beyond
the chain). The target PB of an instance corresponds to a central amino acid
in a window. The first layer of a model is called the sequence-to-structure layer
because it classifies the sequence information into local structures. The second
layer of a network is called the structure-to-structure layer because it classifies
the first layer’s outputs into PBs. The first-layer classifier’s output is a vector of
length 16, and each value in a vector presents the likelihood that the central amino
acid in a fragment belongs to a particular prototype. The output of the first-layer
is an input to the second layer of a model.

Feed-forward back-propagation neural networks with a single hidden layer were
used as classifiers in a model (one network per layer). The number of units in a
hidden layer in a first-layer classifier was 100, and in a second-layer classifier was
80. Classifiers were trained using five-fold cross-validation, momentum term 0.9
and learning rate 0.005. The model was trained using overlapping fragments from
1400 chains. Obtained prediction accuracy for protein blocks was 58.5%.

LOCUSTRA

Zimmermann and his team [88] also developed a two-layer method for PBs pre-
diction. Their model is called LOCUSTRA, and it is based on support vector
machines. PSSMs generated by PSI-BLAST were used as input to the first layer.
Like in a dual-layer model [16], each amino acid in a sequence window of length 15
was described with 21 values. A target PB of an instance corresponds to a central
amino acid in a window. The first layer of a method is composed of pairwise-
coupling classifiers. In pairwise coupling, the positive class contains fragments of
one PB while the negative class contains fragments from one of the other PBs.
The second layer is composed of one-per-class classifiers, which use the first layer’s
output as input. In a one-per-class approach, the positive class contains fragments
of one PB, while the negative class contains fragments from all other PBs. Au-

53

CHAPTER 3. STRUCTURAL ALPHABETS

thors used SVM algorithms implemented in LIBSVM software [11]. ν-SVM was
used to train the first-layer classifiers, and C-SVM was used to train the second-
layer classifiers. For the PBs prediction for a given window sequence as input, the
following steps are applied:

1. PB with the highest number of votes from the classifiers of the second-layer
is assigned.

2. If more than one PB have the highest number of votes and PB d is among
them, then PB d is assigned.

3. If PB d is not among the PBs with the highest number of votes, PB m is
assigned.

The dataset contained 1,112 protein chains for training and 222 chains for
testing. Achieved prediction Q16 on a test set was 61%.

svmPRAT

Rangwala and his team [73] developed a svmPRAT toolkit for resolving general
residue-wise classification or regression problems. Problems must be described in
the form of feature matrices, i.e. amino acid at each position in a sequence must
be described using a fixed-length vector. Also, the user can define the number of
neighbours (which is used to define the length of a window sequence), which must
be considered during the processing of an amino acid in a sequence. svmPRAT
consists of two programs: svmPRAT-L for learning models and svmPRAT-P for
prediction based on the learned model.

For the classification problem, svmPRAT-L learns one-versus-rest binary clas-
sification models based on support vector machines. svmPRAT includes several
kernel functions. Obtained models from svmPRAT-L predict each class’s likeli-
hood, and a class with the highest likelihood is assigned to a given instance as
output. The construction of dual-layer models is also provided in svmPRAT.

The toolkit was applied for the prediction of Protein Blocks on a dataset with
1600 proteins. PSSMs generated by PSI-BLAST and predicted secondary struc-
tures by YASSPP [54] were used as input. Models were trained using kernel
functions soe (normalized second-order exponential kernel) and rbf (radial basis
function) and different sequence window length. The best achieved Q16 was 68.9%
for sequence window of length 19.

54

CHAPTER 3. STRUCTURAL ALPHABETS

Figure 3.9: General scheme of a PBs prediction by PB-kPRED 2

PB-kPRED

A fragment and knowledge-based approach, called PB-kPRED, was proposed by
Vetrivel and his team [26]. The authors created a database PENTAdb, which con-
tains pentapeptides extracted from 274,920 protein chains and their corresponding
PBs. For PBs prediction, PB-kPRED searches PENTAdb. Prediction of PBs is
based on querying the PENTAdb for each fragment of 5 amino acids in a given
sequence.

Two methods were defined to chose the optimal PBs among the returned PBs
for a query fragment: the majority rule method and the hybrid method. The
majority rule method chooses the most frequently observed PBs. The hybrid
method considers amino acids of three consecutive PBs of which the central block
corresponds to a query fragment in order to take into account information about
the local environment. Table with normalized frequency (odds) for consecutive
three PBs were calculated. For each 5 consecutive amino acids in a query fragment
of length 7 (which defines three consecutive PBs), all found PBs in the database
are returned. The score is calculated for each central PB among returned PBs as
S1 ∗ S2. S1 is the number of occurrences of central PB and S2 is the sum of the
odds calculated for each returned combination for a processed central PB. Central
PB with the highest score is optimal. The general scheme of a PBs prediction by
PB-kPRED is shown in Figure 3.9.

PBs prediction was performed on a query dataset of 15,544 proteins using pro-
2Source is http://www.bo-protscience.fr/kpred

55

http://www.bo-protscience.fr/kpred

CHAPTER 3. STRUCTURAL ALPHABETS

teins with different sequence identity cut-offs from PENTAdb in order to evaluate
the influence of homologues on the quality of the prediction (from 30% to full
database). Achieved average accuracy was 66.31%.

56

4 New Protein Blocks predictors

An overview of published methods for the prediction of Protein Blocks from an
amino acid sequence is given in chapter 3. Described PBs predictors can be divided
into three groups according to the used approaches and sequence information used
as inputs to the predictors:

• PBs predictors based on Bayesian approach [15, 36] which use amino acid
sequence and defined sequence families.

• Predictor PBk-PRED [26] based on fragment and knowledge-based approach
which searches for compatible sequences in a database of pentapeptides from
protein structures. PBk-PRED can be applied only if compatible sequences
can be found.

• PBs predictors based on different machine learning approaches [73, 88, 16],
mainly Support Vector Machines, which use evolutionary information of a
chain in a form of PSSM matrix obtained using PSI-BLAST program [34].

The best-reported Q16 of these PBs predictors is 68.9% for SVMprat tool [73].
As part of the thesis, several PBs prediction models were developed using

different data mining approaches and machine learning algorithms. Different in-
formation about the amino acid sequence in comparison with the available PBs
predictors was used. The results described in this chapter are submitted for review
[64].

57

CHAPTER 4. NEW PROTEIN BLOCKS PREDICTORS

4.1 Material

Protein chains in used dataset
In November 2018, the PISCES[84, 85] webserver was used to obtain a non-
redundant set of protein chains as the base for the research. PISCES is a public
webserver for culling sets of protein sequences from the Protein Data Bank (PDB)
[7] by user-specified cutoff for sequence identity and structural quality. To obtain
enough proteins with good structure quality for the research, the specified per-
centage identity cutoff of chains was 25%, the resolution cutoff was 2.5 Å, and
the R-factor cutoff was 0.25. The total number of chains in the used dataset was
11,159, and the total number of amino acids was 2,632,534. Using the Pbxplore
tool [27] and PDB data for proteins obtained by PISCES, each chain was coded
to a sequence of protein blocks.

Data preparation for PBs model building
Information of a chain that can be predicted or determined based on the amino
acid sequence was used in addition to an amino acid sequence as input in the
model-building phase in order to obtain more accurate PBs predictors. Method
Spider3 was used for the prediction of structural properties of proteins; program
RepeatPlus was used to determine the occurrence of certain types of repeats in
amino acid sequences and several predictors were used to find potential protein
intrinsically disordered regions. Figure 4.1 illustrates the process of PBs prediction
models development. The amino acid sequences in FASTA format were presented
as input to Spider3, protein intrinsically disordered regions predictors and Repeat-
Plus. Their results were combined with amino acid sequences and corresponding
PBs sequences and used as input to classification algorithms.

Structure properties

Spider3 [44] is a method for the prediction of one-dimensional structure properties
from an amino acid sequence using LSTM-bidirectional recurrent neural networks
and evolutionary information of a chain. The result of a method contains predicted
secondary structure described with 3 states (H for helix, E for sheet and C for

58

CHAPTER 4. NEW PROTEIN BLOCKS PREDICTORS

amino acid
sequences

structure properties
predictor

disorder region
predictors

occurrence of
repeats

classification
algorithms

PBs prediction
models

Figure 4.1: Illustration of the process of PBs prediction models development

coil), accessible surface area (ASA) and backbone ϕ and ψ angles for each amino
acid in a sequence given as input. Spider3 was used as a web service.

Repeats in amino acid sequences

Program RepeatsPlus [50] based on a method defined by Jelovic et al. [51] was
used for finding a statistically significant subset of a determined set of repeats in
amino acid sequences. Direct repeats (DN) and inverse repeats (IN) with minimal
length 2 in amino acid sequences were extracted. A pair of substrings x and y of
a string z where x begins at position startx of z, and substring y begins at position
starty of z, is

• direct repeat (DN) if and only if x = y and startx < starty;

• inverse repeat (IN) if and only if x = w and startx ≤ starty where w is
inverse of y (for example, the inverse of string abc is cba).

Substring x is a left part of a repeat and substring y is a right part of a re-
peat. Repeats of both types in protein chains were extracted in the format:
chain_id, startx, endx, starty, endy, x, y

Disorder regions of protein

Whole proteins or parts of proteins that do not fold or lack fixed 3D structure are
called disorder proteins and disorder regions [28]. Methods, such as X-ray crys-
tallography and NMR spectroscopy [21], are used for experimental determination

59

CHAPTER 4. NEW PROTEIN BLOCKS PREDICTORS

of disorder regions of proteins. Several predictors have been developed to locate
potentially disorder regions for a given amino acid sequence. Some of these pre-
dictors were used to mark potentially disorder regions in chains from the dataset:
VL-XT, DisEMBL, Espritz, GlobPlot, IUPred2A, IsUnstruct and RONN.

PONDR (Predictor Of Natural Disordered Regions) VL-XT predictor [31] is
based on neural networks. The output of the PONDR VL-XT is a prediction score
between 0 and 1 for each amino acid in a given sequence. A score larger than 0.5
indicates the potential that amino acid belongs to a disorder region.

DisEMBL [32] uses three criteria for assigning order or disorder state to each
amino acid in a sequence:

• loops/coils criterion relies on DSSP [53] tool for secondary structure assign-
ment. The amino acids to which DSSP assignes loop state (T , S, B, I) are
labeled with disorder state.

• hot loops criterion relies on DSSP tool for secondary structure prediction
and amino acids mobility based on B factor. Disorder state is assigned to
the amino acids from loops with a high degree of mobility.

• missing coordinates criterion relies on X-Ray structures in the PDB database.
Amino acids with missing coordinates are labelled with disorder states.

An ensemble of artificial neural networks was built for each of the defined
criteria for the disorder. DisEMBL with different criteria was applied on amino
acid sequences in the used dataset. Result obtained using loops/coils criterion
was labelled with DisEMBL_LC; the result obtained using hot loops criterion was
labelled with DisEMBL_HL and the result obtained using missing coordinates
was labelled with DisEMBL_R465.

Espritz [83] is an ensemble of predictors built using bidirectional recurrent
neural networks. As input parameters for the predictors were used: five Atchley
indices [5], which transform amino acid codes to five numerical values and sum-
marize amino acid variability, one-hot encoding of 20 amino acids and multiple
sequence alignment profile. Proteins from different datasets were used for training
and testing the predictors: X-ray disorder, DisProt disorder, NMR mobility and
other datasets.

Espritz predictor based on different datasets was applied on amino acid se-
quences in the used dataset for the research. Result obtained using the X-ray

60

CHAPTER 4. NEW PROTEIN BLOCKS PREDICTORS

disorder dataset was labelled with Espritz_XRAY; the result obtained using the
DisProt disorder dataset was labelled with Espritz_DISPROT and the result ob-
tained using the NMR mobility dataset was labelled with Espritz_NMR.

GlobPlot [60] calculates function for the propensity of amino acids to be in
globular or non-globular states. It is based on propensity for a given amino acid
to be in random coil and regular secondary structure.

IUPred2A [67, 20] combines two predictors - IUPred and ANCHOR2. IUPred
predicts disorder or order state for each amino acid in the amino acid sequence
while ANCHOR2 predicts disordered binding sites. For the prediction, IUPred
and ANCHOR2 use an energy estimation based on the interaction between amino
acids in the local environment. IUPred2A was used for the prediction of short
stretches of disorder (result was labelled with IUPred2A_S) and long disordered
regions (result was labelled with IUPred2A_L).

IsUnstruct [61, 62] predictor is based on the Ising model from statistical physics
which was adapted to the disorder–order transition in a protein chain.

RONN (regional order neural network) [87] predictor is a modification of bio-
basis function neural network method [80] for the detection of disordered regions.

All predictors except VL-XT were downloaded and used in the local environ-
ment as standalone versions. VL-XT was used as a web service. EpDis-MassPred
system[49] was used for the generation of the output of all disorder predictors
except VL-XT for protein chains in the dataset.

The result of VL-XT per chain is in format position, amino_acid, predic-
tion_score and the result of EpDis-MassPred contains chain_id, dataset name,
the start position of the region, the end position of the region, region state, pre-
dictor name. Region state can be D for disorder region or O for order region.

Secondary structures

Dictionary of Secondary Structure of Proteins (DSSP) program [53] was used to
assign secondary structure states to amino acids in order to compare the true
DSSP and predicted secondary structure from Spider3. For the comparison of
the DSSP and predicted secondary structures from Spider3, eight DSSP states
were transformed into three states (H, E and C), as it was done for training the
Spider3 method:

• states G, H and I were transformed to H ;

61

CHAPTER 4. NEW PROTEIN BLOCKS PREDICTORS

• states B and E were transformed to E;

• other states were transformed to C.

Data preparation
After processing and merging the outputs of Spider3, RepeatPlus, DSSP and dis-
order predictors, each amino acid in a sequence was described with:

• categorical values:

– one-letter name;

– true secondary structure from DSSP;

– predicted secondary structure by Spider3;

– disorder region flag per disorder predictor;

– flag per left and right part of DN repeat;

– flag per left and right part of IN repeat;

• numerical values:

– predicted backbone angles by Spider3;

– predicted accessible surface area by Spider3.

In the research, the dataset for building PBs prediction models was prepared
in both data formats described in section 2.2: fixed-length sliding window format
and sequence format. Sliding window of length five was used, i.e. one instance
corresponded to a fragment of five consecutive amino acids in a sequence
(Ax−2, Ax−1, Ax, Ax+1, Ax+2) (x is a position of amino acid in a sequence). The
amino acid at each position in a fragment was described with a one-letter name
and properties obtained with Spider3 (backbone angles, secondary structure and
ASA). Repeat and disorder flags at the level of the amino acid were replaced with
repeat and disorder flags at the fragment level. Table 4.1 contains a detailed
description of repeat flags at the fragment level which were calculated for DN and
IN repeats. Disorder flags at the level of a fragment were calculated by the rule:
If any amino acid in a fragment belongs to a disordered region, the flag value is 1,
otherwise 0. The target attribute contained PB of the fragment’s central amino
acid. Fixed-length sliding window version of dataset contained only fragments

62

CHAPTER 4. NEW PROTEIN BLOCKS PREDICTORS

whose central amino acid had a defined PB, i.e. fragments whose assigned protein
block was not Z.

Part of the chain without missing amino acids in the PDB file was one instance
in sequence format version of data. Each amino acid in an instance was described
with its one-letter name, properties obtained with Spider3, flags of repeats at the
amino acid level and IDR flags at the amino acid level. Target attribute contained
the associated sequences of PBs. It must be noted that for the first two and last
two amino acids in an input sequence, Z was assigned instead of PB since a PB
cannot be assigned to them.

Dataset partition
For building PBs prediction models, two types of data partition were used:

• partition based on protein sequences. 11,159 sequences from PISCES were
split into two groups called subset1 and subset2 for building PBs prediction
models based on fixed-length sliding window format data and PBs prediction
models based on sequence data. Subset1 had 7,761 chains, and subset2 had
the remaining 3,398 chains. To test the impact of the size of the training
dataset on the quality of the PBs prediction model, instances of chains in
subset1 were used initially as training dataset and instances of chains in
subset2 as test dataset. Afterwards, instances of chains in subset2 were
used as training dataset, and instances of chains in subset1 as test dataset.
Besides the partition based on subset1 and subset2, partition on training
and test parts with the ratio of 50:50 was used for building PBs prediction
models based on sequence data.

• partition based on instances in fixed-length sliding window format data.
Dataset was partitioned in training, validation and test parts using different
ratios of instances. This partition type can be used only for building PBs
prediction models based on fixed-length sliding window format data.

Exploration of dataset
In order to check the quality of the dataset and relationships between attributes,
the following analyses of the dataset were performed:

• amino acid distribution in the dataset;

63

CHAPTER 4. NEW PROTEIN BLOCKS PREDICTORS

Disorder flag on the instance
level Description

PB out repeat
If no amino acid of an instance belongs to either
the left or right part of any repeat, the flag
value is 1, otherwise is 0.

repeat in PB
If amino acids of an instance contain the left
or right part of any repeat (applicable only to
repeats of length <= 5), the flag value is 1,
otherwise is 0.

PB in repeat
If complete instance is in the left or
the right part of any repeat, the flag value is 1,
otherwise is 0.

PB center in repeat
If the central amino acid of an instance is in
the left or right part of any repeat,
the flag value is 1, otherwise is 0.

PB intersect left repeat
If complete instance is in the left
part of any repeat, the flag value is 1,
otherwise is 0.

PB intersect right repeat
If complete instance is in the right
part of any repeat, the flag value is 1,
otherwise is 0.

left edge of left repeat in PB
If amino acids of an instance are on the left
edge of the left part of any repeat, the flag value
is 1, otherwise is 0.

right edge of left repeat in PB
If amino acids of an instance are on the right
edge of the left part of any repeat, the flag value
is 1, otherwise is 0.

left edge of right repeat in PB
If amino acids of an instance are on the left
edge of the right part of any repeat, the flag
value is 1, otherwise is 0.

right edge of right repeat in PB
If amino acids of an instance are on the right
edge of the right part of any repeat, the flag
value is 1, otherwise is 0.

PB intersect homorepeat
If amino acids of an instance have an
intersection with (either left or right edge of)
repeat, and repeat is homorepeat than the flag
value is 1, otherwise is 0.

Table 4.1: Repeat flags at the fragment level for DN and IN repeats

64

CHAPTER 4. NEW PROTEIN BLOCKS PREDICTORS

• secondary structure distribution in the dataset;

• Spider3 prediction quality;

• analysis of the occurrence of DN and IN repeats in amino acid sequences;

• analysis of predicted disorder regions.

Also, comparison of instances of chains in subset1 and subset2 was performed.

Amino acid distribution in the dataset

Amino acid frequencies in the dataset were compared to calculated amino acid
frequencies in the UniProtKB/Swiss-Prot protein knowledgebase release 2021_01
(UniProtKB/Swiss-Protdb)[1]. For the comparison of subset1 and subset2, amino
acid frequencies were calculated in chains of each subset. The correlation of amino
acid frequencies in the used dataset and UniProtKB/Swiss-Prot database is 0.99,
as well as the correlation of amino acid frequencies in chains of subset1 and sub-
set2. Table 4.2 shows the calculated amino acid frequencies. Comparing amino
acid frequencies in the used dataset and UniProtKB/Swiss-Prot database, it can
be noticed that amino acids Methionine (M) and Serine (S) were slightly more rep-
resented in UniProtKB/Swiss-Prot db, while amino acids Aspartic Acid (D) and
Tyrosine (Y) were slightly more represented in the dataset. Comparing amino acid
frequencies in the chains of subset1 and subset2, it can be noticed that the largest
differences correspond to Methionine (M) and Glutamic Acid (E). The differences
of frequencies in subset1 and subset2 for Methionine and Glutamic Acid are 1.56%
and -0.5%, respectively.

In the analysis of frequencies of amino acid fragments of lenght 5 (A1A2A3

A4A5) in whole dataset per protein block and position of amino acid in a fragment,
it was noticed that some amino acids are well or poor represented at some positions
of certain PBs:

• Glycine (G) is well represented at position 2 for PB a (60.2%), at position 3
for PBs i (58.8%) and for PB j (82.4%), at position 4 for PBs p (41.3%), h
(58.1%) and o (61.0%), and at position 5 for PBs g (47.4%), e (58.2%) and
n (64.3%).

• Proline (P) is well represented at position 2 (12.0%), and position 5 (11.8%)
in PB b, at positions 4 (13.6%) and 3 (10.3%) in PB f ; at position 4 (12.2%)

65

CHAPTER 4. NEW PROTEIN BLOCKS PREDICTORS

Amino acid dataset (%) subset1(%) subset2(%)
UniProtKB
Swiss-Prot
db(%)

A 8.15 8.04 8.41 8.25
C 1.23 1.29 1.08 1.38
D 5.96 5.9 6.11 5.46
E 6.77 6.63 7.13 6.72
F 4.2 4.19 4.22 3.86
G 6.96 7 6.85 7.07
H 2.36 2.38 2.29 2.27
I 5.84 5.75 6.08 5.91
K 5.75 5.72 5.83 5.8
L 9.61 9.52 9.84 9.65
M 1.69 2.13 0.57 2.41
N 4.36 4.37 4.32 4.06
P 4.53 4.56 4.46 4.73
Q 3.83 3.78 3.95 3.93
R 5.17 5.17 5.18 5.53
S 6.1 6.12 6.06 6.63
T 5.44 5.41 5.5 5.35
V 6.94 6.91 7.01 6.86
W 1.44 1.47 1.38 1.1
Y 3.66 3.64 3.71 2.92

Table 4.2: Amino acid frequencies in whole dataset, part subset1, part subset2,
and in UniProtKB/Swiss-Prot database

in PB g; at position 2 (12.9%) in PB i; at position 3 (17.7%) in PB k; at
position 2 (17.2%) in PB l. Proline is poorly represented in PB n at all
positions (frequency is from 0% to 1.9% per position), and its frequency is
0% in PB b at position 5.

• Serine (S) is well represented in PB k at position 2 (15.2%), PB l at position
1 (14.4%) and PB f at position 3 (13.3%).

In fragments of PB m, each amino acid has a similar frequency at all positions
in a fragment. For example, Leucine (L) has frequencies in the range from 10.7%
to 11.2%.

66

CHAPTER 4. NEW PROTEIN BLOCKS PREDICTORS

Secondary structure distribution in the dataset

Analysis of the secondary structure distribution in fragments of length 5 per PB
was performed. Transformed 3-state DSSP secondary structures of amino acids
were used in the analysis. The results are in accordance with the results of analysis
of PBs and secondary structures published in [15, 36]. Conclusions per PB are:

• PBs a, b and c are associated with β-sheet N-caps since

– percentages for β-sheet in fragments of PB a from position 1 to 5 are:
8.3%, 4.3%, 21.6%, 73.7%, and 48.1%;

– percentages for β-sheet in fragments of PB b from position 1 to 5 are:
33.5%, 28.5%, 14.6%, 35.3%, and 38.8%;

– percentages for β-sheet in fragments of PB c from position 1 to 5 are:
7.4%, 25.4%, 45.4%, 53%, and 51.5%.

• PBs e and f are associated with β-sheet C-caps since

– percentages for β-sheet in fragments of PB e from position 1 to 5 are:
66.6%, 66.7%, 56%, 33.6%, and 8.2%;

– percentages for β-sheet in fragments of PB f from position 1 to 5 are:
41.4%, 40.3%, 29.2%, 8.5%, and 13.6%;

• PBs from g to j are mainly associated with coils.

• PBs k and l are associated with α-helix N-caps since

– percentages for α-helix in fragments of PB k from position 1 to 5 are:
3.8%, 0.2%, 50.0%, 55.0,%and 57.8%, while for coil are: 67.5%, 83.6%,
49.4%, 44.4%, and 37.1%;

– percentages for α-helix in fragments of PB l from position 1 to 5 are:
1.6%, 58.3%, 64.7%, 71.3%, and 64.4%, while for coil are: 84%, 41.2%,
34.6%, 27.2%, and 30.1%.

• PBs n, o and p are associated with α-helix C-caps since

– percentages for PB n from position 1 to 5 are: 83.3%, 82.8%, 75.9%,
38.1%, and 2.3%, while for coil are: 13.4%, 16.8%, 23.7%, 61.5%, and
96.7%;

67

CHAPTER 4. NEW PROTEIN BLOCKS PREDICTORS

– percentages for α-helix in fragments of PB o from position 1 to 5 are:
65.7%, 59.2%, 28.9%, 1.2%, 6.2%, while for coil are: 31.3%, 40.5%,
70.5%, 97.4%, 82.9%;

– percentages for α-helix in fragments of PB p from position 1 to 5 are:
66.1%, 44.1%, 21.1%, 0.8%, 7.5%, while for coil are: 33.3%, 55.4%,
77.8%, 85.5%, and 63.2%.

• The two most frequent PBs (m and d) are associated with regular secondary
structures:

– PB m is associated with the central α-helix. Percentages for β-sheet
in fragments of PB d from position 1 to 5 are: 91.9%, 92.5%, 91.5%,
89.2% and 82.0%.

– PB d is associated with β-sheet. Percentages for β-sheet in fragments
of PB d from position 1 to 5 are: 64.2%, 70.6%, 74.7%, 68.9% and
56.2%.

There is no significant difference in the secondary structure distribution in
chains in subset1 and subset2 since the correlation of secondary structure frequen-
cies is 0.99.

Spider3 prediction quality

Analysis of the quality of the Spider3 predictor on the dataset for secondary struc-
tures and dihedral angles was performed. As a performance measure for secondary
structure, accuracy was used. The 3-state secondary structures assigned by DSSP
to amino acids in the dataset presented the true secondary structures. Measured
accuracy on the dataset is 85.43% , which is in accordance with the reported ac-
curacy of 84% for Spider3 secondary structure prediction in [44]. As expected, H
state is best predicted by Spider3 with a recall of 0.9, E state is worst predicted
with a recall of 0.79. The recall of secondary structure per state varies among
PBs:

• the recall of state H is between 0.77 and 0.95 for PBs d, f, k, l, m and n,
while for other PBs is up to 0.51, and for PBs i is only 0.03;

• the recall of state E is between 0.71 and 0.87 only for PBs b, c, d and e,
while recall is up to 0.62 for other PBs, and for PB o is only 0.04;

68

CHAPTER 4. NEW PROTEIN BLOCKS PREDICTORS

• the recall for state C is between 0.82 and 0.96 for PBs from a to l and PBs
o and p, while for PBs m and n is 0.66 and 0.71, respectively.

Mean Absolute Error (mae) was used for the comparison of true angles and
predicted angles by Spider3. mae was calculated by the equation:

mae =

∑n
i=1 |true_anglei − predicted_anglei|

n
(4.1)

where n is the number of amino acids.
The calculated mae on the used dataset are 17.4° for ϕ and 25.0° for ψ, which

is better then reported mae for angles by Heffernan et al. in [44] where mae is
18.3° for ϕ and 27.0° for ψ. Calculated mae for angles of a central amino acid in
fragments per PB are in the range from 8.4° to 59.6°. PBs associated with α-helix
have the smallest mae: 8.4° for ϕ and 12.3° for ψ for PB m, 14.8° for ϕ and 21.1°
for ψ for PB n. PBs associated with coils have largest mae: 55.8° for ϕ and 59.6°
for ψ for PB j and 55.5° for ϕ and 37.7° for ψ for PB i.

Figure 4.2 shows calculated mae for the central amino acid in fragments of
length 5 of each PB. Values are in degrees.

Figure 4.2: Mean absolute error between true dihedral angles in proteins and
predicted angles by Spider3 per PB

69

CHAPTER 4. NEW PROTEIN BLOCKS PREDICTORS

Analysis of occurrence of DN and IN repeats in amino acid sequences

DN repeats are slightly more present in amino acid sequences in the dataset: on
average, 33 amino acids per 100 amino acids in the sequence belong to DN repeats,
while 35 amino acids per 100 amino acids in the sequence belong to IN repeats. In
the analysis of the occurrence of repeats per position of amino acids in fragments
of length 5 for each PB, it was observed that:

• the central amino acid in PB j has the highest frequencies of DN and IN
repeats. 44.9% of PB j fragments have a central amino acid belonging to
DN repeats, and 48.7% to IN repeats.

• PBs m, n and o have the highest frequencies of DN and IN repeats at each
position. Repeat frequency per amino acid position in these PBs is between
39.2% and 42% for DN repeats and between 41.1% and 44.8% for IN repeats.

• PBs b and d have lower repeat frequencies at each position; frequencies of
DN repeats per amino acid position are between 35.8% to 36.5% and between
38.7% and 39.8% for IN repeats.

Analysis of predicted disorder regions

The occurrence of disorder fragments was calculated for the whole dataset and
fragments per PB. Disorder fragments are fragments of length 5 with at least
one amino acid in a disorder region. The occurrence of disorder fragments was
calculated for each applied predictor and it is from 5.35% to 91.76% for the dataset
(see Table 4.3). For easier comparison of disorder predictors per PBs, the difference
between the maximal disorder fragment frequency in PBs and the minimal disorder
fragment frequency in PBs (disorderdiff) was calculated by the equation:

disorderdiff = maxx∈PBsfx −minx∈PBsfx (4.2)

where fx is a frequency of disorder fragments for a PB x.
Table 4.3 shows the calculated percentage of predicted disorder fragments and

the difference between the max and min frequency of disorder fragments among
PBs calculated as disorderdiff ∗ 100 for each disorder predictor. It can be noticed
that:

70

CHAPTER 4. NEW PROTEIN BLOCKS PREDICTORS

• protein blocks are similar according to predictors VL-XT and
IUPred2A_L. Percentage of disorder fragments is 26.50% for VL-XT and
disorderdiff is 0.029, while percentage of disorder fragments is 91.76% for
IUPred2A_L and disorderdiff is 0.039;

• PB m has the smallest disorder fragment frequency or is among PBs with
the smaller disorder fragment frequency for each disorder predictor.

• predictor GlobPlot has high disorderdiff because disorder fragment frequency
of PB m is 8.1%, while disorder fragment frequencies of PBs from g to j and
PB e are between 29.3% and 34.8%.

• the highest calculated value for disorderdiff is for disorder predictors Dis-
EMBL_HL and DisEMBL_LC due to the lower disorder fragment frequency
of PBm than the disorder fragment frequency of other PBs. For disorder pre-
dictor DisEMBL_HL, disorder fragment occurrence for PBm is 25.6%, while
for other PBs is between 36.6% and 45.5%. For predictor DisEMBL_LC,
disorder fragment occurrence for PB m is 43.5%, while for other PBs is
between 74.2% and 90.3%.

Disorder predictor Occurrence of fragments
is disorder region (%) [16] disorderdiff ∗ 100

Espritz_DISPROT 5.35 2.57
Espritz_XRAY 5.37 2.14
DisEMBL_R465 7 2.45
IUPred2A_S 7.25 4.26
Espritz_NMR 14.04 16.28
IsUnstruct 15.07 4.75
GlobPlot 18.4 26.8
RONN 19.17 6.01
VL-XT 26.5 2.94
DisEMBL_HL 37.02 19.94
DisEMBL_LC 70.02 46.83
IUPred2A_L 91.76 3.85

Table 4.3: Percentage of predicted disorder fragments and calculated
disorderdiff ∗ 100 for each disorder predictor

71

CHAPTER 4. NEW PROTEIN BLOCKS PREDICTORS

4.2 PBs prediction models
Program Spider3 predicts protein structure properties, among which are dihedral
angles. Predicted dihedral angles can be used stand-alone for the prediction of
Protein Blocks for a given amino acid sequence. Q16 for Protein Blocks predicted
for amino acid sequences using only the predicted dihedral angles by Spider3 is
72%. The aim of the research was to use data mining and predicted disordered
regions and determined DN and IN repeats, besides predicted protein structure
properties by Spider3, in order to obtain a PBs prediction model with higher Q16.
With this choice of input data in a prediction model, where predicted dihedral
angles are used as part of the input data for the prediction of prototypes of the
structural alphabet defined by angles, two questions can arise:

a) If the dihedral angles determined by predicted prototypes of the structural
alphabet by the new model are less precise than the predicted dihedral angles
used as part of the model input, why this approach should be used?

b) If the dihedral angles determined by predicted prototypes of the structural
alphabet are better than the predicted dihedral angles used as part of the
new model input, whether a recursive approach should be used? Should
dihedral angles determined by predicted prototypes in iteration i-1 (i = 1,2,
... n) be used in iteration i as part of the input to the model and how many
iterations should be used?

Even if predictors of structural alphabet prototypes do not outperform the existing
dihedral angle predictors, as is the case with Protein Blocks, the availability of
accurate structural alphabet prototype predictors is important since the structural
alphabets have been confirmed as very useful in various studies, such as protein
structure analysis and comparison of proteins using structural alphabet prototypes
[65, 69].

Applied classification algorithms
Based on the format of the dataset, different classification algorithms can be used
for building the PBs classification model. As described, the dataset was prepared
in two formats which are usually used in the development of predictors for protein
structure properties.

72

CHAPTER 4. NEW PROTEIN BLOCKS PREDICTORS

For data in fixed-length sliding window format, pattern classification algo-
rithms can be applied. Since an instance of a dataset in fixed-length sliding win-
dow format describes the part of a sequence (usually a small part of the whole
sequence), only the relations between amino acids in a fragment can be learned by
a model. The relationship of amino acids that are in the neighbourhood according
to their positions in the sequence is called a short-range relationship. Bidirec-
tional recurrent neural networks (BRNN) can be applied to sequence format data.
The advantage of BRNN is the ability to learn short-range, as well as long-range
relationships between amino acids in a sequence [42, 43]. BRNN have been success-
fully applied for the prediction of protein structural properties [44, 29]. Datasets
used for the development of existing PBs predictors based on machine learning
algorithms [73, 88] were in fixed-length sliding window format. The list of applied
classification algorithms in the research and used data mining packages is shown
in Table 4.4.

Data format Package Algorithm

Fixed-length sliding window
IBM Intelligent miner SPRINT

SPSS Modeler

C5.0, CART,
CHAID, QUEST,
Random Trees,
Neural networks,
XGBoostTree

Python library
scikit-learn

Multilayer
Perceptron (MLP),
Random Forest (RF)

Sequence Python library Keras LSTM-BRNN
Table 4.4: List of used data mining packages and classification algorithms

Classification based on fixed-length sliding window data
In order to develop an accurate PBs prediction model, different models were built
using data in fixed-length sliding window format and several classification algo-
rithms from data mining packages SPSS Modeler [48], IBM Intelligent miner [46],
and Python library scikit-learn [24, 23]. Obtained PBs prediction models were
built using different decision tree algorithms and neural networks in SPSS Mod-
eler, as well as Decision Forest and Multilayer Perceptron implemented in the

73

CHAPTER 4. NEW PROTEIN BLOCKS PREDICTORS

Python library scikit-learn (see Table 4.4). Also, the algorithm SPRINT imple-
mented in IBM Intelligent miner was used for building the PBs prediction model.

Additional preprocessing for the dataset in fixed-length sliding window data
format wasn’t necessary before the application of classification algorithms imple-
mented in SPSS Modeler and IBM Intelligent miner, since they use preprocessing
procedure to adapt data in the required format as part of the model-building phase.
Since the algorithms in the Python library scikit-learn require the numeric input
data, the categorical attributes (amino acid name and secondary structure) were
transformed using 0 to n-1 coding. For building models based on neural networks
implemented in Python packages, values of dihedral angles were transformed to
range [0, 1] by formula angle+180

360
. Values of ASA attributes of amino acids were

normalized to range [0, 1] by dividing the ASA value with the maximal value of
the corresponding amino acid. Repeat flags had 1/0 values. Disorder flags had
D/O values or 1/0 when the numerical inputs were required.

PBs prediction models obtained using SPSS Modeler and Intelligent
Miner

PBs prediction models were developed with SPSS Modeler using (a) data partition
based on instances and ratio of 50:30:20 for training, test and validation parts and
(b) data partition based on protein sequences (subset1/subset2 partition). In order
to find optimal parameter values of algorithms (such as boosting, bagging, cost
matrix for Decision trees), different values have been tested.

Table 4.5 shows the calculated Q16 for the best PBs prediction models obtained
using data partition based on fragments. The best-obtained model by Q16 was
developed using C5.0 in SPSS Modeler with boosting option with value 10 and
defined cost matrix with weight 10 for misclassification of PB d. The best model
was called PBC5.0d. The Q16 of PBC5.0d for training and test parts is 80.8%,
and for validation part is 80.7%.

Besides listed algorithms, the SVM algorithm was also applied, but SPSS Mod-
eler failed to generate a model after a few weeks of execution.

The analysis showed that ASA attributes do not contribute to increasing the
accuracy of models, so ASA attributes were not used in building the final PBs
prediction models with SPSS Modeler and Intelligent Miner.

For building PBs prediction models based on sequence data partition (sub-
set1/subset2 partition), only C5.0 algorithm was used since it had the best Q16

74

CHAPTER 4. NEW PROTEIN BLOCKS PREDICTORS

Algorithm
Q16

for training
part (%)

Q16

for test
part (%)

Q16

for validation
part (%)

C5.0 with weight 10 for
misclassification of PB d
in cost matrix

80.83 80.78 80.72

Random Trees without
cost matrix 67.36 67.32 67.3
CART without cost matrix 69.48 69.49 69.44
Exhaustive CHAID
without cost matrix 63.29 63.15 63.25
QUEST without cost matrix 64.48 64.38 64.43
MLP 72.55 72.47 72.5
Bayes Net 70.01 69.94 69.89
XGBoost Tree 78.16 78.1 78.04

Table 4.5: Q16 of SPSS models obtained using SPSS Modeler on data with fixed-
length sliding window format and dataset partition based on fragments

among models based on fragment partition.
First, the subset1 was used for building PBs prediction models and subset2 for

the final test. Then, the opposite, subset2 was used for building PBs prediction
models and subset1 for the final test. Models were built using a ratio of 50:50
for training and test parts in both cases. Best-obtained models were built using
algorithm options: boosting 4 and cross-validation 10. PBs prediction models were
built without and with a defined cost matrix with weight 10 for misclassification set
in all cells referring to preferable PB. Table 4.6 shows the results of PBs prediction
models built on subset1, while Table 4.7 shows the results of PBs prediction models
built on subset2. Tables 4.6 and 4.7 show Q16 for training and test parts obtained
by partitioning the subset used for building the model, and Q16 for final tests.
For models built on subset1, Q16 of training and test parts is between 76.59% and
81.25%, but Q16 on the final test is worse, it is between 72.11% and 75.50%. For
models built on subset2, Q16 for training and test parts is between 77.13% and
81.57%, and Q16 on final test is between 70.83% and 75.25%. Same as for models
built on subset1 , models built on subset2 perform a bit worse on the final test. It
can be noticed that models built with the same parameter values but on different
subsets behave similarly according to Q16 for the training and test parts and on
the final evaluation. The highest difference for Q16 is 3.19% (on final tests for a

75

CHAPTER 4. NEW PROTEIN BLOCKS PREDICTORS

pair of models built with a defined cost matrix for PB n). Q16 differences for the
rest pairs of models and data subsets are less than 1.51%.

PB for which was
increased a weight
for misclassification
in cost matrix

Q16 for training
partition (%)

Q16 for test
partition (%)

Q16 for
subset2 (%)

a 78.64 78.62 73.14
b 79.62 79.64 73.14
c 80.74 80.59 72.43
d 81.17 81.25 72.11
e 78.09 78.16 72.55
f 80.03 80.02 72.68
g 77.81 77.87 73.44
h 78.09 78.19 73.22
i 77.73 77.77 73.47
j 77.42 77.5 73.57
k 79.31 79.31 72.88
l 79.36 79.43 72.92
m 80.47 80.45 72.41
n 77.6 77.73 75.5
o 77.98 78.06 73.32
p 78.67 78.63 73.1
without cost matrix 76.59 78.55 73.84

Table 4.6: Q16 for PBs prediction models built on subset1 using algorithm C5.0
with options boost 4 and cross-validation 10 and without or with a cost matrix
for preferable PB

PBs prediction model based on SPRINT algorithm was built using IBM Intel-
ligent miner and ration of 50:50 for training and test parts. The obtained Q16 for
training data is 71.83%, and 71.77% for test data.

PBs prediction models obtained using library scikit-learn

As listed in Table 4.4, algorithms Multilayer Perceptron (MLP) and Random For-
est (RF) from library scikit-learn were used for building the PBs prediction models.
For finding the optimal values of algorithm parameters, 5-fold cross-validation was
applied on a sample of 3,720 sequences with a resolution up to 1.7 Å. The ratio of
70:30 for the training-test partition was used. Optimal architecture for Multilayer
Perceptron (MLP) was: 3 hidden layers with 100 neurons per layer, logistic sig-

76

CHAPTER 4. NEW PROTEIN BLOCKS PREDICTORS

PB for which was
increased a weight
for misclassification
in cost matrix

Q16 for training
partition (%)

Q16 for test
partition (%)

Q16 for
subset1 (%)

a 79.00 79.04 71.91
b 79.96 79.92 71.63
c 81.25 81.02 71.15
d 81.56 81.57 70.83
e 78.67 78.66 71.96
f 80.42 80.54 71.34
g 78.44 78.53 72.23
h 78.56 78.64 72.01
i 78.16 78.26 72.24
j 78.24 78.24 72.28
k 79.87 79.81 71.54
l 79.69 79.76 71.6
m 80.93 80.94 71.17
n 78.2 78.28 72.31
o 78.48 78.56 72.22
p 79.17 79.21 71.94
without cost matrix 77.13 77.22 75.25

Table 4.7: Q16 for PBs prediction models built on subset2 using algorithm C5.0
with options boost 4 and cross-validation 10 and without or with a cost matrix
for preferable PB

moid function as activation function, Adam solver for weight optimization, initial
learning rate 0.0001 and the maximum number of iterations 500. The optimal
parameter values for Random Forest (RF) classifier were: the number of trees was
100, the impurity measure was Gini function, the maximum depth of the tree was
50, the minimum number of samples required to split an internal node was 50.

Based on optimal parameters, the final models were built using fragment-based
training-test partition with a ratio of 50:50. Table 4.8 shows the Q16 for obtained
models.

Besides the dataset with fragments of length 5, the longer fragments (with
lengths from 7 to 13 amino acids) were also used for building the PBs prediction
models with algorithms from the scikit-learn library. PBs prediction models based
on fragments longer than 5 did not provide better Q16, which leads to the con-
clusion that the properties of 5 amino acids that determine one protein block are
sufficient for the prediction of protein blocks.

77

CHAPTER 4. NEW PROTEIN BLOCKS PREDICTORS

Algorithm Q16 (%) for
training part

Q16(%) for
test part

RF 77.44 74.37
MLP 74.30 74.19

Table 4.8: Q16 for PBs prediction models built using algorithms Random Forest
and Multilayer Perceptron

Algorithms SVM and KNN from library scikit-learn were also applied using 5-
fold cross-validation and dataset for parameters determination. The obtained Q16

model for SVM was less accurate (Q16 on a test part was 73.6%) and the model
building lasted several days. Hence, the SVM was not used to build a model
using the larger data. For all tested values for parameters of the KNN algorithm,
only overfitted models were obtained since the Q16 for the training set was always
100%, and up to 65% for the test set. Thus, neither the KNN was used to build
the model using the whole data.

Classification based on sequence data
PBs prediction models based on data in sequence format were built using Long
Short Term Memory Bidirectional Recurrent Neural Networks (LSTM-BRNN)
and python libraries Keras [37] and TensorFlow [2]. For finding the optimal archi-
tecture of the neural network, 3,720 sequences with resolution up to 1.7 Å were
used. The chosen architecture used: LSMT layer with 64 nodes per direction,
Adam optimization algorithm, concatenation as merge mode, tanh as activation
function, accuracy as evaluating metric and categorical cross-entropy as a loss
function.

For building the final model, subset1/subset2 partition was used. subset1 was
used as training part and subset2 as part for testing. 20% of instances in the train-
ing partition was used as validation data. The model was built using 40 epochs.
Q16 for the obtained LSTM-BRNN model is 75.0% on the training partition and
75.3% on the test partition.

Networks with other activation functions and merge mode did not increase
Q16, nor networks with more complex architecture.

Besides subset1/subset2 partition, PBs prediction models were built using par-
tition based on sequences with a ratio of 50:50 for training-test parts. The obtained

78

CHAPTER 4. NEW PROTEIN BLOCKS PREDICTORS

LSTM-BRNN model is similar to the model built using subset1/subset2 partition,
since the Q16 for the training part was 75.4% and 74.7% for the test part.

Since Spidar3 also uses sequence format of data, this approach provides
learning of the long-range relationship between amino acids.

4.3 Analysis of PBs prediction models
The obtained PBs prediction models were analyzed by:

• comparing the obtained PBs prediction models from different groups;

• the influence of disorder flags and repeat flags on quality of PBs prediction
models;

• detailed overview of the best PBs prediction model;

• comparison with other works.

Comparisons of the obtained PBs prediction models
The best developed PBs prediction models from each group of models were used
in comparison:

• PBs prediction model PBC5.0d developed using SPSS Modeler, as the best-
developed model;

• MLP and RF models obtained using scikit-learn library;

• BRNN-LSTM model obtained using library Keras and data in sequence for-
mat.

Performance of the selected PBs prediction models was measured using Q14 (see
Table 4.9), precision and recall of PBs calculated on test dataset part (see Figure
4.3a and 4.3b). Q14 was used to measure the PBs prediction models performance
for PBs other than the two most represented PBs (PB m and PB d). Since the
PBs m and d are two PBs that all models predict well, Q14 is useful for comparing
the models based on their performance for less frequent and less predictable PBs.

79

CHAPTER 4. NEW PROTEIN BLOCKS PREDICTORS

PBs prediction model Q14(%)
PBC5.0d 68.7
MLP (scikit-learn) 58.7
RF(scikit-learn) 58.6
BRNN-LSTM 58.5

Table 4.9: Q14 of PBs prediction models

Figure 4.3: Precision (a) and recall (b) calculated on the test dataset for PBs
prediction models

Model PBC5.0d has the best performance by Q14 (68.7%) and the highest
precision and recall for all PBs. All PBs models have high and similar precision
and recall for PB m; precision for PB m is between 0.87 and 0.9, and the recall is
between 0.92 and 0.94. Also, all models have a similar recall for PB d. For other
PBs, the model PBC5.0d performs better than other PBs models; especially for
PBs associated with the secondary structure coil.

Besides the PBs prediction models from different model groups, models based
on subset1/subset2 partition and built using algorithm C5.0 and defined cost ma-
trix for particular PB were compared. subset1 was futher partitioned using a ratio
of 50:50 on the training and test part. Calculated precisions on the test part for
obtained models are shown in Figure 4.4a, while the calculated recalls are shown
in Figure 4.4b. On the x-axis is PB for which the weight of misclassification in
the cost matrix was set to 10, and on the y-axis is PB for which the performance
measure (precision and recall) is calculated.

80

CHAPTER 4. NEW PROTEIN BLOCKS PREDICTORS

Figure 4.4: Precision (a) and recall (b) of C5.0 models with a defined cost matrix
for a particular PB on test part

It can be noticed that the highest precision for each PB has a PBs model
obtained using a cost matrix with increased cost for that PB, while it is the
opposite for a recall. The positive side of a model built using an increased cost
for one PB is that it makes fewer mistakes for instances to which it assigns that
PB, and the negative side is that the model will decrease the number of truly
predicted instances of that PB. The model with the increased cost for PB d is the
best among the compared models since it has one of the highest values for recall
and precision for most of PBs.

81

CHAPTER 4. NEW PROTEIN BLOCKS PREDICTORS

Analysis of the importance of disorder flags and repeat
flags on PBs prediction
In order to analyse the importance of disorder flags and repeat flags on PBs pre-
diction, different algorithms were used for building pairs of PBs prediction models
using the same parameter values but different data. One PBs model of a pair was
built using flags of disordered regions and repeats, and the other without flags of
disordered regions and repeats. The difference of Q16 for models in a pair is less
than 0.01 for all applied algorithms, so the flags of disordered regions and repeats
didn’t improve the overall accuracy. On the other side, some pairs of models
have different precision for some PBs. For easier comparison, the difference of PB
precision for a pair of models was calculated by the formula

precisiondiff = (precision of model with flags−
precision of model without flags) ∗ 100

(4.3)

Table 4.10 shows the comparison of pairs of models obtained using SPSS Modeler
and algorithms: (a) C5.0 with the defined matrix cost for PB d, (b) CART and (c)
XGBoost-Tree. For each pair of models is shown: precisions calculated using test
part and a model built on the dataset with flags, precisions calculated using test
part and model built on the dataset without flags, and the difference of precisions
calculated as precisiondiff .

According to precisiondiff calculated for pairs of models built using C5.0, the
flags of disordered regions and repeats increase the most the precision for PBs
associated with coils (PBs j, i, and h). The usage of flags in model based on
CART increases the precision for PBs n, p, b, a, d and j, while not using the
flags increases precision for PBs f, h and l. Disorder and repeat flags are not very
important for models built using XGBoost-Tree algorithm since the absolute value
of precisiondiff for all PBs is less than 1.2 except for PB i.

It can be concluded that more accurate predictions for some individual PB
can be obtained using models that do not have the highest Q16. For example, a
model obtained using XGBoost-Tree has the best precision for PBs g, i and o,
while a model obtained using C5.0 has the best precision for some of other PBs
(for example PBs h and j).

82

CHAPTER 4. NEW PROTEIN BLOCKS PREDICTORS
P
ro
te
in
B
lo
ck

C
5.
0
w
it
h
th
e
in
cr
ea
se
d
co
st
fo
r
P
B
d

C
A
R
T

X
G
B
oo
st
-T
re
e

pr
ec
is
io
n

of
m
od
el

w
it
h
fla
gs

pr
ec
is
io
n

of
m
od
el

w
it
ho
ut

fla
gs

p
re
ci
si
on

d
if

f

pr
ec
is
io
n

of
m
od
el

w
it
h
fla
gs

pr
ec
is
io
n

of
m
od
el

w
it
ho
ut

fla
gs

p
re
ci
si
on

d
if

f

pr
ec
is
io
n

of
m
od
el

w
it
h
fla
gs

pr
ec
is
io
n

of
m
od
el

w
it
ho
ut

fla
gs

p
re
ci
si
on

d
if

f

a
0.
75

0.
74

0.
77

0.
63

0.
60

2.
99

0.
75

0.
74

0.
48

b
0.
67

0.
65

1.
51

0.
42

0.
39

3.
53

0.
65

0.
64

0.
39

c
0.
72

0.
71

0.
78

0.
54

0.
54

0
0.
66

0.
66

0.
42

d
0.
85

0.
84

1.
26

0.
73

0.
71

2.
5

0.
78

0.
77

0.
21

e
0.
70

0.
70

0.
93

0.
62

0.
60

1.
39

0.
70

0.
69

1.
14

f
0.
73

0.
72

0.
60

0.
50

0.
56

-6
.1
5

0.
71

0.
71

0.
52

g
0.
60

0.
58

2.
86

0.
40

0.
40

0
0.
65

0.
65

0.
23

h
0.
70

0.
68

2.
18

0.
52

0.
55

-3
.0
5

0.
68

0.
68

-0
.1
1

i
0.
69

0.
67

1.
46

0.
46

0.
44

1.
42

0.
72

0.
70

1.
96

j
0.
61

0.
57

3.
90

0.
46

0.
44

2.
08

0.
60

0.
60

-0
.3
0

k
0.
74

0.
73

1.
65

0.
60

0.
61

-1
.0
0

0.
72

0.
72

-0
.0
9

l
0.
75

0.
74

1.
16

0.
59

0.
61

-2
.9
7

0.
74

0.
74

0.
50

m
0.
90

0.
90

0.
06

0.
86

0.
87

-0
.5
8

0.
89

0.
89

0.
16

n
0.
80

0.
78

1.
91

0.
78

0.
71

7.
52

0.
80

0.
81

-0
.4
6

o
0.
75

0.
75

0.
12

0.
64

0.
66

-1
.4
3

0.
78

0.
77

1.
19

p
0.
69

0.
68

0.
80

0.
57

0.
50

6.
40

0.
69

0.
68

0.
89

Table 4.10: Comparison of precision per PB for pairs of PBs prediction models
built using same classification algorithm and data with and without disorder and
repeat flags 83

CHAPTER 4. NEW PROTEIN BLOCKS PREDICTORS

Analysis of the best PBs prediction model
As the best obtained PBs prediction model, the performance of PBC5.0d was
analysed using precision, recall, F1 and F2 per PB calculated on test part (see
Figure 4.5a.) Also, the normalized confusion matrix of the test part for PBC5.0d
was calculated (see Figure 4.5b).

Model performs well for the most represented PBs which are associated with
regular secondary structures. F1 for PB m is 0.92 and for PB d is 0.85. However,
it has poorer performance for less represented classes that are associated with the
coil. F1 for PB g is 0.50 and 0.58 for PB j.

In the case of false classification, the instances are assigned to PBs m and d for
the most PBs. It can be noticed, that the percentage of false assigned instances
of PBs i and j to PB p is the highest among false assigned for those two classes.

Comparison with other PBs predictors
The best-obtained model in the research, model PBC5.0d, was compared with
previously published methods for the prediction of PBs. PBs predictors were
compared by the recall reported in the published paper [26] and the recall of
PBC5.0d calculated on the test part of the dataset (see Table 4.11). PBC5.0d
performance is the best for all PBs except for PB g. Method PB-kPRED using a
hybrid method and homologous at 100% for the prediction of a query test has a
better recall for PB g.

84

CHAPTER 4. NEW PROTEIN BLOCKS PREDICTORS

Figure 4.5: Performance measures (a) and confusion matrix (b) calculated on
test dataset for PBC5.0d model

85

CHAPTER 4. NEW PROTEIN BLOCKS PREDICTORS

PB Bayes method LOCUSTRA
PB-kPRED using a
hybrid method and
homologous at 30%

PB-kPRED using a
hybrid method and
homologous at 100%

PBC5.0d

a 0.57 0.58 0.46 0.67 0.76
b 0.21 0.26 0.19 0.52 0.62
c 0.33 0.45 0.29 0.59 0.71
d 0.54 0.72 0.40 0.67 0.85
e 0.39 0.45 0.29 0.57 0.67
f 0.31 0.41 0.29 0.60 0.73
g 0.30 0.27 0.15 0.43 0.42
h 0.41 0.38 0.33 0.61 0.65
i 0.38 0.37 0.30 0.59 0.66
j 0.50 0.48 0.21 0.50 0.55
k 0.33 0.46 0.36 0.64 0.76
l 0.36 0.43 0.32 0.60 0.71
m 0.71 0.84 0.56 0.76 0.94
n 0.50 0.52 0.35 0.62 0.75
o 0.48 0.55 0.38 0.63 0.76
p 0.29 0.41 0.32 0.59 0.71

Table 4.11: Comparison of the performance by the recall of PBs predictors of other
authors[26] and the best-obtained model PBC5.0d in the research

86

5 Development of new structural
alphabets

Existing structural alphabets described in chapter 3 have been developed using the
datasets with up to a few hundreds of proteins. Up to now, the largest dataset used
in structural alphabet research had <1500 proteins [81]. As Kolodny stated in [58]
in 2002, it is to be expected that a more precise structural alphabet can be obtained
using a larger database with proteins whose structure has been experimentally
determined. This chapter analyzes the capability of developing a new structural
alphabet using a clustering algorithm TwoStep, in order to create a base for the
development of new predictors of local protein structures.

5.1 Process of the development of structural
alphabets

For the analysis, different sets of prototypes (structural alphabets (SAs)) were
constructed using clustering on groups of fixed-length fragments with a length of
L amino acids (L = 4, 5, ..., 10) and a different number of prototypes. Dihedral
angles (ϕ and ψ) were used for the description of fragments. A prediction model
using a classification algorithm was developed for each SA. SAs were analysed and
compared based on their ability to approximate the structure of protein and the
accuracy of the corresponding predictor. The aim was to find the optimal number
of prototypes in SA and optimal fragment length for approximation of the protein
structure and prediction of prototypes for a given amino acid sequence. General
steps of the development for one SA are illustrated in Figure 5.1.

87

CHAPTER 5. DEVELOPMENT OF NEW STRUCTURAL ALPHABETS

extraction of
fragments of

length L

clustering
algorithm

SA prototypes

classification
algorithm

SA predictor

training
part

test
part

evaluation
of SA

Figure 5.1: Steps in the research about structural alphabets

5.2 Material
The data preparation phase for the research was similar to the data preparation
phase for building PBs predictors. The PISCES [84, 85] webserver was used to
obtain a non-redundant set of protein chains as the base for the research in January
2020.

The specified percentage identity cutoff of chains was 25%, the resolution cutoff
was 2 Å, and the R-factor cutoff was 0.25. The specified cutoffs except resolution
cutoff were the same as for proteins used for the development of PBs prediction
models. The specified protein resolution cutoff for the development of new struc-
tural alphabets was 2 Å instead of 2.5 Å in order to use only proteins with more
precisely experimentally determined structures. The total number of chains in the
used dataset was 9,287. Coordinates of protein chain atoms were obtained from
the PDB database [7]. Dihedral angles (ϕ and ψ) were calculated for each amino
acid in a chain based on PDB data. DSSP program [53] was used to assign 8-state
secondary structures to amino acids in used chains. Spider3 [44] was used for the
prediction of structure properties (backbone angles, 3-state secondary structure

88

CHAPTER 5. DEVELOPMENT OF NEW STRUCTURAL ALPHABETS

and accessible surface area (ASA)) for amino acid sequences of chains in a dataset.
After merging the results obtained by calculating dihedral angles, DSSP pro-

gram and Spider3, the following properties for each amino acid in protein chains
were extracted:

• one-letter amino acid name;

• true ϕ and ψ angles;

• secondary structure assigned by DSSP (true secondary structure);

• predicted ϕ and ψ angles, secondary structure and ASA.

The chains in the dataset were partitioned in training and test parts with a
ratio of 50:50. The fragments of chains in the training part were used for clustering,
i.e. development of SAs, and for building the corresponding prediction models of
obtained SAs. Fragments of chains in the test part were used for the evaluation
of obtained SAs prediction models.

For the development of SAs, fixed-length fragments of length from 4 to 10
amino acids were extracted from protein chains in the dataset and grouped by
the length. Amino acids of a fragment were described with dihedral angles.
2 ∗ (L− 1) dihedral angles were extracted (ψi, ϕi+1, ψi+1, ..., ϕi+L−2, ψi+L−2, ϕi+L−1)

for a fragment of L amino acids with the first amino acid at position i in a sequence.
Each fragment in each group, used for the construction of the SAs, had the

corresponding fragment in a dataset used for building the prediction models of
SAs. Fragments used for building prediction models were described with one-
letter amino acids and predicted values by Spider3 (backbone angles, secondary
structures and ASAs).

5.3 Development of structural alphabets
For extraction of prototypes from the local structure of proteins, the TwoStep
clustering algorithm in SPSS Modeler was applied on each L fixed-length frag-
ment group (L = 4, 5, ..., 10). Best results were obtained using log-likelihood as
a distance measure in the search of dense regions in a dataset and Bayesian In-
formation Criterion (BIC) for the determination of the best number of clusters.
In order to find the optimal number of prototypes for each of the fixed-length

89

CHAPTER 5. DEVELOPMENT OF NEW STRUCTURAL ALPHABETS

fragment groups, a clustering algorithm was applied repeatedly with different re-
strictions for the minimal and maximal number of clusters. The difference between
the used limits for the minimal and the maximal number of clusters was 10. As a
minimal number of clusters, the values from 10 to 100 with a step of 10 were used.
A difference of 10 between a minimal and a maximal number of clusters was used
to compare how the structural alphabet’s ability to approximate protein structure
and the accuracy of prediction models of extracted prototypes change with the in-
creasing number of prototypes. The results should point to the range in which the
optimal number of prototypes is. For each used restriction (minimal cluster num-
ber, maximal cluster number), the minimal cluster number was determined as the
best number of clusters. Also, a clustering algorithm was applied with a restriction
of 16 clusters on each of the fixed-length fragment groups. Based on the results of
each clustering on fragment groups, one SA was defined. Thus, 11 SAs for each
used fragment length were obtained. One prototype of a SA was defined based on
members of one cluster. Each dihedral angle α̂ (α̂ ∈ (ψ1, ϕ2, ψ2, ..., ϕL−1, ψL−2, ϕL))
of a prototype was calculated as mean of angles of cluster members with which
the prototype is associated. The mean angle was calculated using

α̂ = atan2(
1

M

M∑
i=1

sinαi,
1

M

M∑
i=1

cosαi) (5.1)

where M is the number of fragments (members) in a cluster and αi is the cor-
responding angle of a member i in a cluster. Each SA is labelled with a name
L_n where L is a length of fragment and n is the size of SA, i.e. the number of
prototypes. Each prototype of a SA is labelled with a number. Labels in one SA
are from 1 to n. An amino acid sequence can be translated to labels of prototypes
of a SA by processing overlapping fragments of length L from the N-terminus to
the C-terminus and assigning to it the most similar prototype. The prototype
label corresponds to the first amino acid in the fragment. The last L − 1 amino
acids in a sequence do not have the assigned prototype. A special label can be
assigned to them so that the prototype sequence would be the same length as the
amino acid sequence, as Z is assigned to the first two and last two amino acids in
a sequence when the sequence is coded with PBs. The angles of the prototypes
assigned to the fragments are used to determine the angles of amino acids in a
sequence. The position of the amino acid in a fragment also corresponds to the
position of the angles in the prototypes used to determine the angles of the amino

90

CHAPTER 5. DEVELOPMENT OF NEW STRUCTURAL ALPHABETS

acid. To determine the angle of one amino acid in a sequence, the mean value of
the corresponding angles of all prototypes to which it belongs is used.

As expected, in the analysis of the graphical presentation of ϕ and ψ angles for
each position of amino acid in prototypes per SA using Ramachandran plot, it can
be observed that prototypes cover most the regions of α− helix and β − sheet in
3-state secondary structure (see Figure 3.4). The sparse regions are beginning to
be covered when the size of SA is larger (usually from 50). Graphical presentation
of ϕ and ψ angles for each position of amino acid in prototypes per SA is shown
in Appendix in Figures from 7.9 to 7.21.

For each SA, rmsda between its prototypes and corresponding cluster members
were calculated, as well as the size of clusters as a percentage of fragments in them.
The minimal, maximal and average values of obtained rmsda and the minimal and
maximal size of clusters for each constructed SA are shown in Table 5.1. In the
analysis of SAs per group, it was observed that all SAs groups have in common:

• each SA in a group has at least one big cluster;

• the biggest decrease in the average rmsda is when the size of SA is increased
from 10 16 or 16 to 20;

• as the size of SA increases, the average rmsda generally decreases, but each
SAs group has a threshold in size from which the increase in the size of SA
does not significantly affect the decrease in the mean rmsda (for example,
for a group of SAs with length 5, that threshold is 30, since the mean rmsda
for SA 5_30 is 34.36◦ and for SA 5_40 is 34.32◦).

Each obtained SA has one big cluster, which is labelled with 1. The percentages
of fragments covered by prototypes in SAs are shown in Figures from 7.1 to 7.7 in
Appendix. In the analysis of the occurrence of DSSP states in obtained prototypes,
it was observed that state H has the largest frequency of occurrence at each amino
acid position in prototype 1. All ψ angles in prototypes with label 1 are around
−40◦(+/ − 5◦) and all ϕ angles are around −65◦(+/ − 5◦). Frequencies of DSSP
states per amino acid position in fragments cover by prototypes in SAs with 20
prototypes are shown in Figures from 7.22 to 7.35 in Appendix.

Parts of amino acid sequences without missing coordinates in the PDB file for
at least 10 amino acids were coded in sequences of prototypes using all obtained
SAs. For each amino acid sequence, rmsda was calculated between true dihedral

91

CHAPTER 5. DEVELOPMENT OF NEW STRUCTURAL ALPHABETS
SA

m
in

rm
sd
a

m
ax

rm
sd
a

av
g

rm
sd
a

m
in

cl
us
te
r

si
ze
(%
)

m
ax

cl
us
te
r

si
ze
(%
)

SA
m
in

rm
sd
a

m
ax

rm
sd
a

av
g

rm
sd
a

m
in

cl
us
te
r

si
ze
(%
)

m
ax

cl
us
te
r

si
ze
(%
)

4_
10

11
.6
1

60
.1
5

37
.8
9

2.
08

33
.6
5

7_
60

6.
95

78
.0
4

39
.2

0.
23

19
.0
8

4_
16

7.
5

62
.2
1

32
.5
1

1.
59

27
.9
8

7_
70

6.
88

75
.2
3

38
.7
4

0.
22

19
.0
2

4_
20

7.
36

69
.8
9

33
.5
8

0.
55

27
.9

7_
80

6.
83

74
.7
8

38
.5
3

0.
22

18
.4
9

4_
30

7.
36

68
31

.3
7

0.
54

27
.9

7_
90

6.
83

71
.5
9

38
.0
2

0.
2

18
.4
9

4_
40

6.
43

59
.8
1

29
.4
1

0.
28

26
.8

7_
10
0

6.
66

71
.3
9

36
.8
9

0.
2

18
.2
6

4_
50

6.
29

59
.7
1

27
.6
8

0.
28

26
.6
8

8_
10

9.
95

65
.0
7

53
.2
1

4.
6

21
.1

4_
60

6.
27

59
.7
1

26
.2
1

0.
28

26
.6
6

8_
16

9.
74

64
.7
5

48
.1
9

1.
92

20
.9
3

4_
70

6.
18

59
.0
1

25
0.
17

26
.5
8

8_
20

9.
48

63
.2
7

45
.3
6

1.
57

20
.7
2

4_
80

6.
18

67
.0
5

24
.6
2

0.
13

26
.5
8

8_
30

9.
37

67
.4
9

45
.1
1

1.
35

20
.6
6

4_
90

6.
1

66
.9
4

24
.3
5

0.
05

26
.3
3

8_
40

9.
29

68
.8
7

43
.3
6

0.
94

20
.5
6

4_
10
0

6.
09

66
.9

24
.2
8

0.
05

26
.3
2

8_
50

9.
27

74
.0
6

43
.9
5

0.
47

20
.5
5

5_
10

10
.5
7

65
.7
7

46
.5
1

4.
67

29
.7
6

8_
60

7.
76

73
.8
8

42
.4
2

0.
41

18
.1

5_
16

9.
56

66
.7
9

39
.1
8

1.
9

28
.8
3

8_
70

7.
59

74
.4
3

41
.3
7

0.
4

17
.9
8

5_
20

9.
47

66
.7
5

36
.2
9

1.
86

28
.7
6

8_
80

7.
53

74
.3
1

41
0.
24

17
.9
3

5_
30

7.
59

64
.4
4

34
.3
6

0.
5

25
.4
3

8_
90

7.
47

73
.8
8

41
.2
7

0.
21

17
.8
8

5_
40

7.
45

58
.4
2

34
.3
2

0.
48

25
.3
4

8_
10
0

7.
46

71
.2
5

40
.7
8

0.
21

17
.8
6

5_
50

7.
33

61
.5

34
.4
6

0.
24

25
.1
9

9_
10

10
.3
1

69
.0
9

53
.9

4.
75

18
.8
2

5_
60

7.
24

63
.3
8

32
.9
3

0.
22

25
.0
9

9_
16

9.
98

64
.7

52
.2
5

3.
1

18
.6
1

5_
70

7.
24

63
.3
6

31
.7

0.
12

25
.0
9

9_
20

9.
48

64
.5
9

47
.6
5

1.
61

18
.2
9

5_
80

6.
21

66
.1
8

30
.7
4

0.
11

23
.2
3

9_
30

9.
21

66
.3
3

45
.3
4

1.
59

18
.0
8

5_
90

5.
83

66
.1
8

29
.7
7

0.
11

23
.0
3

9_
40

9.
04

68
.3
2

45
.1
6

1.
08

17
.9
4

5_
10
0

5.
09

66
.1
8

28
.9
5

0.
09

18
.9
4

9_
50

9.
03

72
.8
8

44
.7
3

0.
48

17
.9
4

6_
10

9.
56

66
.1
9

51
.5

5.
06

26
.1
1

9_
60

7.
25

74
.9
4

44
.0
5

0.
41

14
.7
3

6_
16

9.
36

62
.9
9

42
.5

1.
71

25
.9
1

9_
70

7
74

.8
6

43
.3

0.
33

14
.5
1

6_
20

9.
18

63
.6
5

41
.3
6

1.
71

25
.7
4

9_
80

7
73

.5
8

43
.6
9

0.
25

14
.5
1

6_
30

8.
15

68
.8
7

38
.9
8

1.
05

24
.4
6

9_
90

7
73

.3
5

43
.6
6

0.
23

14
.5
1

6_
40

8.
15

66
.7
2

38
.9
7

0.
32

24
.4
6

9_
10
0

6.
9

73
.5
8

42
.6
4

0.
22

14
.4

6_
50

6.
74

66
.6
5

37
.0
6

0.
31

20
.4
6

10
_
10

18
.9
3

68
.8
7

56
.9
5

3.
87

21
.7
5

6_
60

6.
51

69
.3
1

36
.4
5

0.
29

20
.3
4

10
_
16

10
.9
1

64
.8

53
.3
4

2.
53

16
.7
7

6_
70

6.
51

65
.8
2

36
.4
8

0.
21

20
.3
4

10
_
20

10
.9
1

64
.8

49
.0
6

1.
61

16
.7
7

6_
80

6.
46

67
.6
6

35
.5

0.
21

20
.2
9

10
_
30

10
.0
8

66
.7
2

46
.3
8

1.
5

16
.2
9

6_
90

6.
46

67
.3
6

35
.0
9

0.
2

20
.2
9

10
_
40

9.
55

73
.8
5

47
.2
2

0.
95

15
.9
9

6_
10
0

6.
46

65
.2
3

34
.6
4

0.
16

20
.2
9

10
_
50

9.
21

73
.9
4

45
.6
3

0.
87

15
.7
9

7_
10

19
.5
4

65
.8
5

54
.7
4

3.
89

30
.9
3

10
_
60

9.
16

73
.8
8

45
.5
8

0.
42

15
.7
5

7_
16

9.
8

65
.7
2

46
.3
7

1.
85

23
.5
4

10
_
70

7.
67

73
.8

44
.5
1

0.
34

12
.9
4

7_
20

9.
74

62
.9
2

44
.1
6

1.
84

23
.5
1

10
_
80

7.
64

73
.6
2

44
.9
5

0.
24

12
.9
3

7_
30

9.
49

78
.4
3

43
.2
6

0.
88

23
.3
2

10
_
90

7.
61

73
.6
8

44
.3
1

0.
24

12
.9
2

7_
40

7.
08

78
.4
4

39
.9
3

0.
88

19
.1
8

10
_
10
0

7.
61

73
.6
4

44
.2
9

0.
24

12
.9
2

7_
50

7.
01

78
.2
4

39
.8
3

0.
47

19
.1
4

Table 5.1: Minimal, maximal and average value of rmsda (in ◦) calculated between
the cluster prototypes and corresponding cluster members and the minimal and
maximal size of clusters (in percent) for each constructed SA

angles and angles assigned based on SA prototypes. Also, mae for ϕ and ψ angles
were calculated based on true and assigned angles. Minimal, maximal and average
value of calculated rmsda and mae for ϕ and ψ angles are shown in Table 5.2. By

92

CHAPTER 5. DEVELOPMENT OF NEW STRUCTURAL ALPHABETS

increasing the size of SAs from 10 to 100, the average value of rmsda decreases
from 10◦ to 14◦ in groups of SAs with length up to 7, while for groups of SAs with
length from 8 to 10, rmsda decreases by up to 5◦. A significant reduction in rmsda
in SAs with longer lengths requires a larger number of prototypes than 100. It is
noticeable that the increase of SA size in each group of SA with the same length
significantly affects the decrease of mae for ψ angle, but it does not affect the mae
of ϕ angle.

Based on the comparison of calculated mae of angles for constructed SAs and
mae reported for Spider3 predictor in [44] (18.3° for ϕ and 27.0° for ψ), it can be
concluded that obtained SAs with mae less than 27.0° could be useful for better
prediction of protein structure.

5.4 Development of predictors for structural
alphabets

Besides the ability of good approximation of protein structure, the usability of a
structural alphabet also depends on the availability of predictors of its prototypes
for a given amino acid sequence. For comparison SAs based on the accuracy
of prototype predictor, a classification model was developed for each SA using
a similar approach based on a fixed-length fragment format database which was
used for building PBs prediction models. The length of the sliding window was
the same as the length of the prototypes, i.e. no information on amino acids in
the neighbourhood outside of a fragment was used. The target attribute contained
the assigned prototype of a fragment. Models for SAs prediction were developed
using neural networks implementation in library Keras and fixed-length fragments.
Prediction models were constructed using two hidden layers. Optimal values of
algorithm parameters were determined for each SA. Obtained optimal activation
function and nodes per hidden layer are shown in Table 5.3 for each SA, as well
as calculated accuracy (i.e. Qk were k is the number of prototypes) on training
and test part of the dataset. It could be noticed that the length of prototypes
doesn’t have a big influence on the accuracy of obtained SAs prediction models.
The increase of the number of prototypes in a SA decreases the accuracy of a
prediction model of SA prototypes.

In the comparison of prediction models of the SAs with the same size S (S =

10, 20, ...100) based on recall of prototypes, it can be observed that prediction

93

CHAPTER 5. DEVELOPMENT OF NEW STRUCTURAL ALPHABETS
SA

m
in

rm
sd
a

m
ax

rm
sd
a

av
g

rm
sd
a

m
ae
fo
r

ψ
m
ae
fo
r

ϕ
SA

m
in

rm
sd
a

m
ax

rm
sd
a

av
g

rm
sd
a

m
ae
fo
r

ψ
m
ae
fo
r

ϕ
4_
10

7.
81

92
.3
9

53
.0
4

32
.4
6

37
.0
4

7_
60

9.
91

89
.7
2

52
.9
1

30
.2
9

39
.1
4

4_
16

6.
92

84
.3
5

47
.3
6

21
.9
3

36
.8
3

7_
70

9.
91

96
.0
3

52
.4
4

29
.4
4

39
.1

4_
20

6.
91

85
.2
2

47
.0
4

21
.6
4

36
.7
3

7_
80

9.
93

95
.5
5

52
.2
4

29
.1
1

38
.8
9

4_
30

6.
91

86
.0
2

45
.5
8

19
.9
6

36
.5
1

7_
90

9.
93

94
.9

52
.3
2

29
.0
3

39
.2

4_
40

6.
91

81
.9
9

45
.5
5

18
.5
3

37
.3
2

7_
10
0

9.
92

94
.7

51
.7
9

27
.8
7

39
.2

4_
50

6.
91

80
.1
4

44
.8
4

17
.5
1

37
.3
7

8_
10

11
.3
2

89
.9

58
.5
1

48
.7
4

33
.4
2

4_
60

6.
91

78
.8

44
.6
9

17
.3
2

37
.3
1

8_
16

11
.2
8

89
.9
7

59
.7
5

44
.0
2

38
.4
6

4_
70

6.
91

79
.2

44
.1

15
.7
7

37
.4
1

8_
20

11
.2
8

91
.2
2

56
.5

37
.6

38
.3
7

4_
80

6.
91

79
.9

43
.9
4

15
.5
3

37
.3
1

8_
30

11
.2
8

94
.2
9

55
.8
1

36
.5
2

38
.2
1

4_
90

6.
92

79
.8
9

43
.5
9

15
.1

37
.3
2

8_
40

11
.3

95
.8

54
.7
3

34
.3

38
.2
2

4_
10
0

6.
92

79
.5
3

43
.3
8

14
.7
8

37
.3
1

8_
50

11
.3

94
.5
3

54
.5

33
.1
5

38
.6
9

5_
10

9
99

.6
9

58
.6
8

41
.7
9

37
.9
8

8_
60

10
.7
7

94
.5
4

54
.5
4

33
.1
5

38
.9
7

5_
16

8.
91

97
.3
6

54
.7
8

35
.5
7

37
.6
7

8_
70

10
.7
7

93
.3
5

54
.1
4

31
.6
8

39
.3
9

5_
20

8.
9

97
52

.2
5

30
.2
3

37
.8
1

8_
80

10
.7
7

92
.7
2

53
.5
3

30
.9
6

39
.3
7

5_
30

8.
4

94
.0
9

50
.3
2

26
.2
4

37
.9
3

8_
90

10
.7
7

91
.7
5

53
.5
6

30
.4
4

39
.7
9

5_
40

8.
4

95
.8
4

48
.9
9

24
.3
2

37
.9

8_
10
0

10
.7
7

95
.2
3

53
.5
6

30
.4
5

39
.7
6

5_
50

8.
4

94
.0
2

48
.1
3

22
.7
6

38
.2
1

9_
10

12
.1
2

87
.9

58
.1
9

47
.3
5

33
.8
5

5_
60

8.
4

94
.0
9

47
.6

21
.6
8

38
.2
1

9_
16

12
.1

92
.5
9

60
.4
9

47
.5
3

37
.4
2

5_
70

8.
4

94
.6
2

47
.4
3

21
.5

38
.1
3

9_
20

12
.1
1

93
.0
3

61
.2
6

46
.5
2

39
.2
2

5_
80

8.
28

93
.0
5

46
.7
2

20
.1

38
.1
2

9_
30

12
.1
1

95
.9
7

58
.9
8

41
.1
4

39
.0
7

5_
90

8.
36

94
.6
9

46
.3
9

19
.6

38
.1
5

9_
40

12
.1
2

92
.5

57
.4
8

39
.1
5

39
.1
3

5_
10
0

8.
21

94
.7
9

46
.2
9

19
.3
5

38
.2
7

9_
50

12
.1
2

96
.4
4

56
.6
6

37
.2
1

39
.1
5

6_
10

9.
77

97
.5
6

61
.8
3

47
.8
6

37
.8
8

9_
60

11
.5
2

91
.3
9

55
.3
2

34
.0
7

39
.3
7

6_
16

9.
76

98
.5
9

57
.3
8

39
.8
9

37
.8
6

9_
70

11
.5
2

92
.1
5

55
.3
4

34
.1
2

39
.3
4

6_
20

9.
75

98
.3
9

56
.7
5

37
.8
1

37
.8
1

9_
80

11
.5
2

96
.0
7

55
.0
7

33
.2
1

39
.4

6_
30

9.
51

96
.7
4

53
.8
6

31
.2
3

39
.0
6

9_
90

11
.5
2

96
.5
5

55
.1
2

33
.1
4

39
.6
6

6_
40

9.
51

92
.1
5

52
.9

29
.8
1

38
.6
6

9_
10
0

11
.5
2

96
.1
3

54
.8
5

32
.7

39
.6
7

6_
50

9.
28

91
.6
3

51
.6
6

27
.9
7

38
.7

10
_
10

12
.9
7

84
.2
4

62
.8
5

54
.6
5

34
.2
4

6_
60

9.
34

95
.6

50
.7
8

26
.1

39
.1

10
_
16

12
.8
9

87
.8
7

61
.2
5

50
.8
1

36
.7
7

6_
70

9.
34

94
.8
4

50
.6
7

25
.8
1

39
.1
1

10
_
20

12
.8
9

88
.4
1

62
.1
7

49
.7
2

38
.5
9

6_
80

9.
34

90
.8
3

49
.4
3

23
.5
7

39
.1

10
_
30

12
.8
8

91
.1
8

59
.9
7

44
.4
1

38
.4
3

6_
90

9.
34

90
.8

49
.0
2

23
.3
6

39
.1
1

10
_
40

12
.9
1

90
.7
6

59
.1
9

43
.1
9

38
.2
6

6_
10
0

9.
34

90
.2
1

48
.4
3

22
.3

39
.1
1

10
_
50

12
.9
1

90
.2
7

58
.8
3

42
.0
5

38
.3
4

7_
10

10
.2
5

93
.3
5

65
.5
2

55
.4

37
.1
2

10
_
60

12
.9

90
.4
3

58
.4
1

40
.8
4

38
.2
9

7_
16

10
.5
2

93
.0
2

60
.7
4

46
.2
1

38
.5
8

10
_
70

12
.2
7

90
.1

57
.5
8

39
.3
9

38
.4
3

7_
20

10
.5
2

95
.1
2

58
.8
2

41
.7
4

38
.4
5

10
_
80

12
.2
7

88
.9
5

57
.8

39
.1

38
.6
9

7_
30

10
.5
1

97
.2
9

55
.6
7

35
.7
9

38
.4
4

10
_
90

12
.2
7

93
57

.3
2

37
.9
9

39
.0
2

7_
40

9.
91

90
.0
3

53
.5

31
.5
1

38
.5
6

10
_
10
0

12
.2
7

93
.0
6

57
.3
9

37
.5
9

39
.3
3

7_
50

9.
91

90
.8
7

53
.7
6

31
.7

39
.1
4

Table 5.2: rmsda and mae between true angles and angles calculated based on
SAs prototypes for amino acid sequences in a training part of the dataset. Values
are in °.

94

CHAPTER 5. DEVELOPMENT OF NEW STRUCTURAL ALPHABETS
SA

nu
m
be
r
of

no
de
s

pe
r
la
ye
r

ac
ti
va
ti
on

fu
nc
ti
on

ac
cu
ra
cy

on tr
ai
ni
ng

pa
rt

ac
cu
ra
cy

on te
st

pa
rt

SA
nu
m
be
r
of

no
de
s

pe
r
la
ye
r

ac
ti
va
ti
on

fu
nc
ti
on

ac
cu
ra
cy

on tr
ai
ni
ng

pa
rt

ac
cu
ra
cy

on te
st

pa
rt

4_
10

25
6

re
lu

77
.2
6

77
.2
1

7_
60

25
6

re
lu

59
.9

59
.9
4

4_
16

12
8

re
lu

69
.2
1

69
.0
8

7_
70

25
6

re
lu

59
.2
3

59
.2
8

4_
20

25
6

re
lu

68
.5
4

68
.4
5

7_
80

51
2

re
lu

57
.9
5

57
.9
8

4_
30

51
2

re
lu

63
.4

63
.2
2

7_
90

51
2

re
lu

56
.2
8

56
.1

4_
40

51
2

re
lu

58
.6
8

58
.5
8

7_
10
0

25
6

re
lu

55
.1
3

55
.1
1

4_
50

51
2

re
lu

56
.9
3

56
.7
9

8_
10

64
ta
nh

76
.3
3

76
.2
9

4_
60

25
6

re
lu

54
.7
2

54
.6

8_
16

51
2

re
lu

70
.3
2

70
.0
3

4_
70

51
2

re
lu

52
.9
9

52
.9

8_
20

25
6

ta
nh

69
.3
3

69
.2
3

4_
80

51
2

re
lu

52
.2
7

52
.2
6

8_
30

51
2

re
lu

66
.2
6

66
.0
5

4_
90

51
2

re
lu

51
.1
8

51
.1
5

8_
40

51
2

re
lu

64
.4

64
.3

4_
10
0

12
8

ta
nh

50
.2
4

50
.2
7

8_
50

12
8

re
lu

63
.1
3

63
.2
2

5_
10

51
2

re
lu

75
.5
1

75
.4
4

8_
60

25
6

re
lu

59
.8
6

59
.7
5

5_
16

25
6

re
lu

72
.8
3

72
.5
4

8_
70

51
2

re
lu

58
.5
9

58
.4
9

5_
20

12
8

re
lu

69
.1
6

69
.3
5

8_
80

51
2

re
lu

57
.9
1

57
.7
5

5_
30

25
6

re
lu

65
.7
7

65
.6
7

8_
90

51
2

re
lu

57
.4
2

57
.2
6

5_
40

25
6

re
lu

62
.3
9

62
.3
3

8_
10
0

51
2

re
lu

56
.1
8

56
.0
3

5_
50

12
8

ta
nh

61
.0
8

60
.9
7

9_
10

25
6

re
lu

75
.5

75
.4
6

5_
60

64
ta
nh

58
.4
1

58
.2
7

9_
16

25
6

re
lu

70
.6
4

70
.1
6

5_
70

51
2

re
lu

56
.8
1

56
.5
7

9_
20

51
2

re
lu

70
.1
1

70
.0
4

5_
80

25
6

re
lu

54
.4
4

54
.3

9_
30

51
2

re
lu

65
.7
4

65
.7
3

5_
90

51
2

re
lu

53
.0
3

53
.0
2

9_
40

25
6

re
lu

62
.9
7

62
.9
4

5_
10
0

51
2

re
lu

48
.9
1

48
.8
6

9_
50

51
2

re
lu

61
.7
2

61
.5

6_
10

64
ta
nh

75
.8
2

75
.7
5

9_
60

51
2

re
lu

58
.6

58
.5
5

6_
16

51
2

re
lu

71
.9
8

71
.7
1

9_
70

51
2

re
lu

57
.6
8

57
.6
4

6_
20

25
6

re
lu

70
.6
8

70
.5
8

9_
80

51
2

re
lu

57
.1
1

56
.9
9

6_
30

51
2

re
lu

65
.7
5

65
.7

9_
90

51
2

re
lu

56
.4
3

56
.2
1

6_
40

25
6

ta
nh

64
.4
6

64
.3
7

9_
10
0

12
8

ta
nh

55
.0
5

54
.9
5

6_
50

51
2

ta
nh

60
.5
6

60
.7

10
_
10

25
6

sig
m
oi
d

76
.5
1

76
.4
9

6_
60

25
6

re
lu

59
.9
5

60
.0
3

10
_
16

51
2

sig
m
oi
d

70
.9
2

70
.8

6_
70

51
2

re
lu

58
.2
3

58
.1
9

10
_
20

51
2

sig
m
oi
d

69
.4
1

69
.2
8

6_
80

51
2

re
lu

57
.4
3

57
.3
8

10
_
30

51
2

sig
m
oi
d

65
.3

65
.4
8

6_
90

51
2

re
lu

56
.8
3

56
.7
9

10
_
40

51
2

sig
m
oi
d

63
.1
1

63
.1
1

6_
10
0

25
6

re
lu

55
.5
5

55
.4
2

10
_
50

25
6

sig
m
oi
d

61
.4
3

61
.2
8

7_
10

51
2

re
lu

76
.8
3

76
.7
1

10
_
60

51
2

sig
m
oi
d

60
.6
2

60
.5

7_
16

12
8

ta
nh

71
.0
4

70
.9
6

10
_
70

51
2

sig
m
oi
d

58
.0
2

58
.1
3

7_
20

25
6

ta
nh

70
.1
6

70
.0
8

10
_
80

51
2

sig
m
oi
d

57
.2
3

57
.2
7

7_
30

25
6

re
lu

67
.3
1

67
.4
2

10
_
90

51
2

sig
m
oi
d

56
.3
9

56
.2
2

7_
40

12
8

re
lu

63
.3
2

63
.3
5

10
_
10
0

51
2

sig
m
oi
d

55
.2
4

55
.0
9

7_
50

25
6

re
lu

61
.1

60
.9
5

Table 5.3: Description of the best-obtained prediction model of prototypes per
SA. For each SA prediction model is presented architecture (activation function
and the number of nodes per hidden layer), accuracy on the training part and
accuracy on the test part.

95

CHAPTER 5. DEVELOPMENT OF NEW STRUCTURAL ALPHABETS

models for longer SAs better predict less represented prototypes, since the minimal
and average recall for SAs of the same size S increase with the increase of the SA
length. The minimal, maximal and average values for precision and recall of
prototypes are shown in Tables 5.4 and 5.5.

As shown in Table 5.2, SAs of length 4 with size from 16 to 100 have the
smallest mea for ψ and smaller average rmsda comparing to other SAs. For the
analysis of predicted angles of amino acids in chains using these SAs, SA prototypes
were predicted for parts of amino acid sequences in the test part of the dataset
without missing coordinates for at least 10 amino acids. mae of ϕ and ψ angles
were calculated for true angles and angles assigned based on predicted prototypes.
Results are shown in Table 5.6. mae of ϕ is similar for all SAs that are compared
and is almost the same as mae calculated for ϕ angles assigned to amino acids
based on the closest prototype of a SA (true prototype). mae of ψ decreases with
increasing the SA size.

Developed prediction models for the SAs constructed with the TwoStep algo-
rithm during the research (with the 100 as maximal size) didn’t achieve mae less
than 27◦ for predicted ψ angles. Based on the results, mae for predicted ψ angles
decreases when increasing the SA size, so the goal could be achieved by applying
the described clustering procedure for a larger number of prototypes or developing
the more accurate SAs prediction models.

5.5 Comparison of structural alphabet 5_16
and Protein Blocks

Prototypes of SA 5_16 were compared with prototypes of Protein Blocks since
both structural alphabets are defined over fragments of length 5 and have the same
number of prototypes.

For each prototype of SA 5_16, the following values are extracted:

• average rmsda between prototype’s dihedral angles and dihedral angles of
its cluster members;

• frequency, i.e. the number of fragments in the training part of the dataset
to which the prototype was assigned;

96

CHAPTER 5. DEVELOPMENT OF NEW STRUCTURAL ALPHABETS
SA

m
in

pr
ec
is
io
n

on
tr
ai
ni
ng

pa
rt

m
ax

pr
ec
is
io
n

on tr
ai
ni
ng

pa
rt

av
g

pr
ec
is
io
n

on tr
ai
ni
ng

pa
rt

m
in

re
ca
ll

on tr
ai
ni
ng

pa
rt

m
ax

re
ca
ll

on tr
ai
ni
ng

pa
rt

av
g

re
ca
ll

on
tr
ai
ni
ng

pa
rt

m
in

pr
ec
is
io
n

on
te
st

pa
rt

m
ax

pr
ec
is
io
n

on te
st

pa
rt

av
g

pr
ec
is
io
n

on te
st

pa
rt

m
in

re
ca
ll

on te
st

pa
rt

m
ax

re
ca
ll

on te
st

pa
rt

av
g

re
ca
ll

on te
st

pa
rt

4_
10

0.
59

0.
89

0.
71

0.
49

0.
93

0.
68

0.
59

0.
89

0.
71

0.
5

0.
93

0.
68

4_
16

0.
52

0.
87

0.
63

0.
38

0.
93

0.
59

0.
52

0.
87

0.
63

0.
38

0.
93

0.
6

4_
20

0.
25

0.
87

0.
59

0.
03

0.
93

0.
54

0.
24

0.
87

0.
59

0.
03

0.
93

0.
54

4_
30

0.
24

0.
83

0.
52

0.
06

0.
95

0.
47

0.
22

0.
83

0.
52

0.
06

0.
95

0.
47

4_
40

0.
27

0.
86

0.
48

0.
04

0.
94

0.
43

0.
26

0.
86

0.
48

0.
04

0.
93

0.
43

4_
50

0.
13

0.
85

0.
44

0.
01

0.
94

0.
39

0.
16

0.
85

0.
44

0.
01

0.
94

0.
39

4_
60

0.
15

0.
81

0.
42

0.
01

0.
96

0.
35

0.
15

0.
81

0.
42

0.
01

0.
96

0.
35

4_
70

0.
13

0.
83

0.
4

0.
01

0.
95

0.
34

0.
13

0.
83

0.
41

0.
01

0.
95

0.
34

4_
80

0.
14

0.
82

0.
38

0.
01

0.
95

0.
32

0.
13

0.
82

0.
38

0
0.
95

0.
32

4_
90

0.
12

0.
83

0.
37

0.
01

0.
95

0.
31

0.
09

0.
83

0.
37

0.
01

0.
94

0.
31

4_
10
0

0
0.
88

0.
35

0
0.
9

0.
28

0
0.
87

0.
34

0
0.
9

0.
28

5_
10

0.
53

0.
9

0.
71

0.
55

0.
93

0.
7

0.
53

0.
9

0.
71

0.
55

0.
93

0.
7

5_
16

0.
53

0.
89

0.
66

0.
44

0.
94

0.
62

0.
53

0.
89

0.
66

0.
44

0.
94

0.
62

5_
20

0.
4

0.
89

0.
62

0.
29

0.
94

0.
59

0.
4

0.
89

0.
63

0.
29

0.
94

0.
59

5_
30

0.
3

0.
83

0.
58

0.
04

0.
95

0.
52

0.
27

0.
83

0.
58

0.
03

0.
94

0.
52

5_
40

0.
26

0.
84

0.
53

0.
02

0.
95

0.
48

0.
24

0.
84

0.
52

0.
01

0.
94

0.
48

5_
50

0.
17

0.
86

0.
5

0.
02

0.
93

0.
44

0.
16

0.
86

0.
5

0.
02

0.
92

0.
45

5_
60

0.
16

0.
84

0.
48

0
0.
94

0.
42

0.
14

0.
84

0.
48

0
0.
93

0.
42

5_
70

0
0.
86

0.
44

0
0.
92

0.
41

0
0.
86

0.
44

0
0.
92

0.
41

5_
80

0
0.
84

0.
43

0
0.
92

0.
39

0
0.
83

0.
43

0
0.
92

0.
39

5_
90

0.
18

0.
82

0.
42

0
0.
93

0.
37

0.
14

0.
82

0.
42

0
0.
93

0.
37

5_
10
0

0
0.
76

0.
4

0
0.
95

0.
35

0
0.
76

0.
4

0
0.
95

0.
35

6_
10

0.
57

0.
91

0.
73

0.
54

0.
93

0.
71

0.
57

0.
91

0.
73

0.
54

0.
93

0.
71

6_
16

0.
5

0.
9

0.
68

0.
41

0.
93

0.
65

0.
51

0.
9

0.
68

0.
41

0.
93

0.
65

6_
20

0.
5

0.
89

0.
65

0.
39

0.
94

0.
62

0.
5

0.
89

0.
65

0.
39

0.
94

0.
62

6_
30

0.
44

0.
87

0.
6

0.
36

0.
94

0.
56

0.
45

0.
87

0.
6

0.
35

0.
94

0.
57

6_
40

0.
35

0.
89

0.
55

0.
2

0.
94

0.
51

0.
34

0.
89

0.
56

0.
2

0.
93

0.
52

6_
50

0.
14

0.
85

0.
54

0.
05

0.
92

0.
47

0.
15

0.
85

0.
54

0.
05

0.
92

0.
48

6_
60

0.
22

0.
86

0.
51

0.
01

0.
91

0.
45

0.
21

0.
86

0.
51

0.
01

0.
91

0.
45

6_
70

0.
2

0.
84

0.
49

0.
03

0.
93

0.
44

0.
18

0.
84

0.
48

0.
02

0.
93

0.
44

6_
80

0.
15

0.
85

0.
48

0.
01

0.
92

0.
42

0.
17

0.
85

0.
48

0.
01

0.
92

0.
42

6_
90

0.
1

0.
86

0.
46

0
0.
91

0.
41

0.
12

0.
86

0.
46

0.
01

0.
91

0.
41

6_
10
0

0.
1

0.
85

0.
44

0
0.
92

0.
39

0
0.
85

0.
44

0
0.
92

0.
39

7_
10

0.
55

0.
89

0.
73

0.
57

0.
93

0.
71

0.
55

0.
89

0.
73

0.
57

0.
93

0.
71

7_
16

0.
54

0.
89

0.
68

0.
4

0.
93

0.
66

0.
54

0.
9

0.
68

0.
4

0.
93

0.
66

7_
20

0.
5

0.
9

0.
66

0.
39

0.
93

0.
64

0.
5

0.
9

0.
66

0.
4

0.
93

0.
64

7_
30

0.
45

0.
88

0.
61

0.
32

0.
94

0.
58

0.
45

0.
88

0.
61

0.
32

0.
94

0.
58

7_
40

0.
45

0.
85

0.
58

0.
27

0.
91

0.
54

0.
45

0.
85

0.
58

0.
28

0.
91

0.
55

7_
50

0.
4

0.
83

0.
56

0.
33

0.
92

0.
52

0.
4

0.
84

0.
56

0.
34

0.
91

0.
53

Table 5.4: Classification report of best-obtained prediction models for SAs with
length 4, 5, 6 and 7 with up to 50 prototypes

97

CHAPTER 5. DEVELOPMENT OF NEW STRUCTURAL ALPHABETS
SA

m
in

pr
ec
is
io
n

on
tr
ai
ni
ng

pa
rt

m
ax

pr
ec
is
io
n

on tr
ai
ni
ng

pa
rt

av
g

pr
ec
is
io
n

on tr
ai
ni
ng

pa
rt

m
in

re
ca
ll

on tr
ai
ni
ng

pa
rt

m
ax

re
ca
ll

on tr
ai
ni
ng

pa
rt

av
g

re
ca
ll

on
tr
ai
ni
ng

pa
rt

m
in

pr
ec
is
io
n

on
te
st

pa
rt

m
ax

pr
ec
is
io
n

on te
st

pa
rt

av
g

pr
ec
is
io
n

on te
st

pa
rt

m
in

re
ca
ll

on te
st

pa
rt

m
ax

re
ca
ll

on te
st

pa
rt

av
g

re
ca
ll

on te
st

pa
rt

7_
60

0.
24

0.
84

0.
53

0.
07

0.
92

0.
49

0.
23

0.
84

0.
54

0.
07

0.
91

0.
49

7_
70

0.
21

0.
86

0.
51

0
0.
88

0.
46

0.
19

0.
86

0.
51

0
0.
88

0.
47

7_
80

0.
15

0.
8

0.
5

0.
04

0.
93

0.
46

0.
14

0.
8

0.
5

0.
04

0.
93

0.
46

7_
90

0.
17

0.
82

0.
48

0.
01

0.
91

0.
44

0.
18

0.
82

0.
48

0.
01

0.
9

0.
45

7_
10
0

0.
17

0.
86

0.
47

0.
02

0.
88

0.
43

0.
14

0.
86

0.
47

0.
02

0.
88

0.
44

8_
10

0.
63

0.
91

0.
75

0.
67

0.
91

0.
73

0.
63

0.
91

0.
75

0.
68

0.
91

0.
74

8_
16

0.
47

0.
91

0.
69

0.
45

0.
91

0.
67

0.
47

0.
91

0.
69

0.
45

0.
91

0.
68

8_
20

0.
52

0.
91

0.
67

0.
36

0.
92

0.
66

0.
51

0.
91

0.
67

0.
35

0.
92

0.
66

8_
30

0.
45

0.
9

0.
62

0.
31

0.
93

0.
6

0.
45

0.
9

0.
63

0.
31

0.
93

0.
6

8_
40

0.
36

0.
89

0.
59

0.
32

0.
93

0.
56

0.
36

0.
89

0.
59

0.
32

0.
93

0.
56

8_
50

0.
36

0.
88

0.
56

0.
24

0.
94

0.
52

0.
37

0.
88

0.
57

0.
24

0.
94

0.
53

8_
60

0.
32

0.
86

0.
54

0.
03

0.
91

0.
5

0.
28

0.
86

0.
54

0.
02

0.
91

0.
51

8_
70

0.
18

0.
83

0.
53

0.
12

0.
94

0.
49

0.
18

0.
83

0.
53

0.
11

0.
93

0.
49

8_
80

0.
19

0.
84

0.
52

0.
08

0.
92

0.
48

0.
18

0.
84

0.
52

0.
08

0.
92

0.
48

8_
90

0.
24

0.
83

0.
51

0.
04

0.
93

0.
46

0.
21

0.
83

0.
51

0.
04

0.
93

0.
47

8_
10
0

0.
21

0.
83

0.
49

0.
02

0.
92

0.
45

0.
2

0.
84

0.
49

0.
02

0.
92

0.
45

9_
10

0.
66

0.
9

0.
74

0.
62

0.
9

0.
73

0.
66

0.
9

0.
74

0.
63

0.
9

0.
74

9_
16

0.
54

0.
9

0.
69

0.
5

0.
91

0.
68

0.
55

0.
9

0.
69

0.
49

0.
91

0.
68

9_
20

0.
5

0.
9

0.
69

0.
5

0.
91

0.
66

0.
5

0.
9

0.
69

0.
49

0.
91

0.
66

9_
30

0.
4

0.
89

0.
63

0.
33

0.
93

0.
61

0.
4

0.
89

0.
64

0.
33

0.
92

0.
61

9_
40

0.
4

0.
87

0.
59

0.
29

0.
94

0.
56

0.
41

0.
88

0.
59

0.
3

0.
93

0.
57

9_
50

0.
35

0.
89

0.
57

0.
26

0.
92

0.
54

0.
35

0.
89

0.
58

0.
27

0.
92

0.
54

9_
60

0.
33

0.
83

0.
55

0.
24

0.
9

0.
52

0.
33

0.
83

0.
56

0.
24

0.
9

0.
52

9_
70

0.
3

0.
84

0.
54

0.
23

0.
86

0.
5

0.
29

0.
85

0.
54

0.
22

0.
86

0.
51

9_
80

0.
27

0.
84

0.
52

0.
21

0.
88

0.
48

0.
27

0.
84

0.
52

0.
2

0.
88

0.
49

9_
90

0.
2

0.
82

0.
51

0
0.
89

0.
47

0.
18

0.
82

0.
51

0
0.
89

0.
48

9_
10
0

0.
22

0.
85

0.
5

0.
02

0.
92

0.
46

0.
19

0.
85

0.
5

0.
02

0.
92

0.
46

10
_
10

0.
7

0.
91

0.
75

0.
61

0.
89

0.
73

0.
7

0.
91

0.
75

0.
62

0.
89

0.
73

10
_
16

0.
55

0.
88

0.
71

0.
42

0.
89

0.
68

0.
55

0.
89

0.
71

0.
42

0.
89

0.
68

10
_
20

0.
47

0.
89

0.
68

0.
37

0.
89

0.
67

0.
48

0.
89

0.
69

0.
37

0.
89

0.
67

10
_
30

0.
37

0.
88

0.
65

0.
39

0.
91

0.
62

0.
38

0.
88

0.
65

0.
39

0.
91

0.
63

10
_
40

0.
37

0.
89

0.
6

0.
33

0.
91

0.
58

0.
37

0.
89

0.
6

0.
33

0.
91

0.
58

10
_
50

0.
3

0.
88

0.
57

0.
3

0.
92

0.
55

0.
31

0.
88

0.
58

0.
3

0.
92

0.
55

10
_
60

0.
32

0.
87

0.
56

0.
29

0.
92

0.
54

0.
33

0.
88

0.
57

0.
3

0.
92

0.
54

10
_
70

0.
32

0.
83

0.
55

0.
24

0.
89

0.
52

0.
33

0.
83

0.
55

0.
25

0.
88

0.
53

10
_
80

0.
31

0.
81

0.
53

0.
25

0.
91

0.
5

0.
31

0.
81

0.
53

0.
26

0.
91

0.
51

10
_
90

0.
26

0.
85

0.
52

0.
13

0.
93

0.
48

0.
27

0.
85

0.
52

0.
13

0.
92

0.
49

10
_
10
0

0.
29

0.
84

0.
5

0.
09

0.
87

0.
48

0.
28

0.
84

0.
5

0.
08

0.
86

0.
48

Table 5.5: Classification report of best-obtained prediction models for SAs with
length and 7 with more than 50 prototypes and SAs with length 8, 9 and 10

98

CHAPTER 5. DEVELOPMENT OF NEW STRUCTURAL ALPHABETS

SA mae for ψ mae for ϕ
4_16 31.32 36.78
4_20 30.92 36.84
4_30 30.35 36.95
4_40 29.33 37.47
4_50 28.84 37.12
4_60 29.26 37.22
4_70 28.34 36.78
4_80 28.02 37.01
4_90 27.92 37.53

Table 5.6: mae for ψ and ϕ angles calculated using the predicted prototypes
assigned by developed SA prediction models for SAs of length 4 and sizes from 20
to 90

• coarse classification based on corresponding secondary structures in which
prototype most frequently occurs. Secondary structure classification was
done based on the frequencies of DSSP states per amino acid position in
cluster members of its associated cluster. Figure 5.2 and 5.3 show frequencies
of DSSP states per amino acid position in members of a cluster associated
with each prototype of SA 5_16.

• the most similar PB based on rmsda calculated between SA 5_16 prototypes
and PBs.

The obtained values are shown in Table 5.7.

Comparing the prototypes of SA 5_16 (see Table 5.7) and PBs (see Table 3.3),
it can be noticed that six prototypes of SA 5_16 have very similar prototypes
in Protein Blocks by rmsda measure, occurence frequency and coarse secondary
structure classification:

• prototype 1 and PB m: rmsda between them is 0.86◦, they are associated
with α-helix and occurences of 1 and m are 28.83% and 30.22%, respecitvely.

99

CHAPTER 5. DEVELOPMENT OF NEW STRUCTURAL ALPHABETS

Figure 5.2: Frequencies of DSSP states per amino acid position in cluster members
for prototypes of SA 5_16 with id from 1 to 10

100

CHAPTER 5. DEVELOPMENT OF NEW STRUCTURAL ALPHABETS

Figure 5.3: Frequencies of DSSP states per amino acid position in cluster members
for prototypes of SA 5_16 with id from 11 to 16

101

CHAPTER 5. DEVELOPMENT OF NEW STRUCTURAL ALPHABETS

Prototype rmsda(◦) Frequency(%) Secondary structure Most similar PB
(rmsda(◦))

1 9.56 28.83 α m(0.86)
2 30.21 3.4 C-cap α p(55.91)
3 40.43 2.75 mainly coil m(62.56)
4 44.66 4.29 mainly coil b(7.23)
5 66.79 2.31 mainly coil l(58.47)
6 40.77 5.94 N-cap α k(11.51)
7 58.41 4.63 mainly coil i(49.3)
8 55.79 3.85 C-cap β e(10.21)
9 46.92 3.62 N-cap β a(5.77)
10 24.71 1.9 C-cap α n(2.34)
11 62.67 5.09 C-cap α/β h(46.11)
12 20.24 3.7 N-cap α l(4.92)
13 30.58 5.59 N-cap β c(16.74)
14 22.72 14.81 β d(3.37)
15 32.17 4.6 C-cap β f (6.79)
16 40.22 4.7 coil / N-cap β c(46.57)

Table 5.7: Description of SA 5_16 prototypes

• prototype 10 and PB n: rmsda between them is 2.34◦, they are associated
with α-helix C-caps and of 10 and n are 1.9% and 1.99%, respectively.

• prototype 14 and PB d: rmsda between them is 3.37◦, they are associated
with β-sheet and occurences of 14 and d are 14.81% and 18.85%, respectively.

• prototype 12 and PB l: rmsda between them is 4.92◦, they are associated
with α-helix N-caps and of 12 and l are 3.7% and 5.46%, respectively.

• prototype 9 and PB a: rmsda between them is 5.77◦, they are associated
with β-sheet N-caps and of 9 and a are 3.62% and 3.89%, respecitvely.

• prototype 15 and PB f : rmsda between them is 6.79◦, they are associated
with β-sheet C-caps and of 15 and f are 4.6% and 6.68%, respecitvely.

For all listed prototype pairs except pair 9-a apply that SA 5_16 prototype has
smaller average rmsda between its dihedral angles and dihedral angles of members
of its associated cluster (for example, average rmsda of prototype 1 is 9.56◦ and
average rmsda of PB m is 15◦).

102

CHAPTER 5. DEVELOPMENT OF NEW STRUCTURAL ALPHABETS

Prototype precision recall F1

1 0.89 0.94 0.91
2 0.58 0.44 0.50
3 0.56 0.46 0.50
4 0.53 0.45 0.48
5 0.59 0.51 0.55
6 0.60 0.67 0.63
7 0.72 0.72 0.72
8 0.66 0.67 0.66
9 0.71 0.71 0.71
10 0.79 0.68 0.73
11 0.75 0.73 0.74
12 0.70 0.66 0.68
13 0.64 0.58 0.61
14 0.70 0.84 0.76
15 0.58 0.48 0.52
16 0.63 0.45 0.53

Table 5.8: Classification report of aplied prediction model for SA 5_16 prototypes
on test part

PBs associated mainly with coil have better average rmsda than SA 5_16
prototypes associated mainly with coil; average rmsda for PBs associated with the
coil is in the range from 43.40◦ to 50.60◦, while for SA 5_16 prototypes average
rmsda is in the range from 40.43◦ to 66.79◦.

The quality of the performance of the prediction model for SA 5_16 on the
test part of the used dataset is shown in Table 5.8. Calculated precision, recall
and F1 are shown for each prototype.

Performance of PBs prediction model PBC5.0d (see Figure 4.5) was compared
with the performance of prototype prediction model for SA 5_16, which was
developed in the research. Compared prototype prediction models behave similarly
for the most frequent and similar prototypes of these two structural alphabets
(pairs 1-m and 14-d): recall and precision for prototype 1 are 0.94 and 0.89,
respectively, while recall and precision for PB m are 0.94 and 0.90, and recall and
precision for prototype 14 are 0.84 and 0.70, respectively, while recall and precision
for PB d are 0.85.

Prototype prediction models have similar performance for prototypes associ-
ated mainly with coils. Precision for SA 5_16 prototypes 3, 4, 5 and 7 is in the

103

CHAPTER 5. DEVELOPMENT OF NEW STRUCTURAL ALPHABETS

range from 0.53 to 0.72, and recall is in the range from 0.45 to 0.72. Precision for
PBs from g to j is in the range from 0.6 to 0.7, and recall is in the range from 0.42
to 0.66.

It can be concluded that the applied procedure for the construction of new
structural alphabets can be used as the base for the construction of new structural
alphabets since its application on fragments of length 5 for 16 clusters managed to
extract several prototypes which have very close prototypes by rmsda and coarse
secondary structure classification in Protein Blocks, which is a structural alphabet
that has been confirmed as very useful in various studies. Also, the distribution
of prototypes of SA 5_16 and Protein Blocks by the coarse secondary structure
classification is similar.

104

6 Conclusion

This dissertation presents one possible way of improving the problem of predicting
structural alphabet (the set of prototypes of the local structure of proteins) for
an amino acid sequence using data mining methods. New models for SA Protein
Blocks prediction, developed using different data mining approaches and several
classification algorithms are described. Developed models for Protein Blocks pre-
diction, compared with the previously reported PBs predictors, use different infor-
mation about the amino acid sequence as input. In conjunction with amino acid
sequences, results of available protein structure predictors for backbone angles,
secondary structure, accessible surface area and potential protein intrinsically dis-
ordered regions, as well as the locations of certain types of repeats in amino acid
sequences were used for building new models for Protein Blocks prediction. It
was shown that usage of information of a protein chain that can be predicted or
determined based on the amino acid sequence can contribute to the development
of more accurate PBs prediction models. The best-obtained models have accuracy
from 74% to 80%, while the best-published accuracy of previously developed PBs
predictors is 69%. Also, the best obtained Protein Blocks prediction model, built
using the C5.0 algorithm, has the best recall for each prototype except for one, in
comparison with the reported recall per prototype for previously developed PBs
predictors. Analysis of the performance of the obtained PBs prediction models
per Protein Block (prototype) shown that more accurate predictions for individ-
ual Protein Block can be obtained using models that are not globally the best by
accuracy. Improved PBs prediction models developed in the thesis could be useful
for bioinformatics studies based on Protein Blocks. For the development of a new
structural alphabet in order to create a base for the development of new predic-
tors of local protein structures, the clustering algorithm TwoStep was applied on
fragments with the length from 4 to 10. For each group of fragments with the
same length, sets of new structural alphabets with the number of prototypes in

105

CHAPTER 6. CONCLUSION

the range from 10 to 100 were developed. The analysis of the obtained structural
alphabets shown that the accurate prediction models of structural alphabets with
prototypes of length 4 and size of 16 or larger could be useful for the prediction
of backbone angle ψ. Developed prediction models for the constructed structural
alphabets haven’t achieved the accuracy which would outperform the existing pre-
dictors of protein structure properties. Based on the results, mae for predicted
ψ angles decreases when increasing the SA size, so the goal could be achieved by
applying the described clustering procedure for a larger number of prototypes or
using a different approach for the development of SAs prediction models. Obtained
structural alphabet with 16 prototypes of length 5 (SA 5_16) was compared with
Protein Blocks. Several prototypes of SA 5_16 are very similar to PBs by rmsda
(rmsda is less than 6.8◦ for 6 prototype pairs from SA 5_16 and Protein Blocks,
and rmsda is less than 16.8◦ for 10 prototype pairs). The distribution of prototypes
of SA 5_16 and Protein Blocks by the coarse secondary structure classification is
very similar. Based on the similarity of SA 5_16 and PB, it can be concluded that
the applied procedure for the construction of structural alphabets can be used as
the base for the development of useful new structural alphabets.

Plans for future work include:

• development of ensemble of the obtained PBs prediction models with the
highest precision for a particular Protein Block to increase the overall accu-
racy of Protein Blocks prediction;

• development of larger size structural alphabets based on TwoStep clustering
algorithm and prediction models for their prototypes using different data
mining approaches and classification algorithms.

106

7 Appendix

7.1 Size of clusters which corresponds to
prototypes of structural alphabets

For each group of SAs with the same length of fragments, the sizes of clusters
associated with their prototypes are shown.

107

CHAPTER 7. APPENDIX

Figure 7.1: Size of clusters in structural alphabets constructed using fragments of
length 4

108

CHAPTER 7. APPENDIX

Figure 7.2: Size of clusters in structural alphabets constructed using fragments of
length 5

109

CHAPTER 7. APPENDIX

Figure 7.3: Size of clusters in structural alphabets constructed using fragments of
length 6

110

CHAPTER 7. APPENDIX

Figure 7.4: Size of clusters in structural alphabets constructed using fragments of
length 7

111

CHAPTER 7. APPENDIX

Figure 7.5: Size of clusters in structural alphabets constructed using fragments of
length 8

112

CHAPTER 7. APPENDIX

Figure 7.6: Size of clusters in structural alphabets constructed using fragments of
length 9

113

CHAPTER 7. APPENDIX

Figure 7.7: Size of clusters in structural alphabets constructed using fragments of
length 10

114

CHAPTER 7. APPENDIX

7.2 Graphical presentations of SA prototypes
Graphical presentations of SA prototypes for each constructed SA using Ra-
machandran plot (R-plot) are shown in Figures from 7.9 to 7.21. ψ angle of
the first amino acid and ϕ angle of the last amino acid in a prototype are shown
in the first R-plot for each SA. Other R-plots of SA show ψ and ϕ angles of one
amino acid in a prototype.

115

CHAPTER 7. APPENDIX

Figure 7.8: Dihedral angles of prototypes in structural alphabets of length 4 with
number of prototypes from 10 to 50

116

CHAPTER 7. APPENDIX

Figure 7.9: Dihedral angles of prototypes in structural alphabets of length 4 with
number of prototypes from 60 to 100

117

CHAPTER 7. APPENDIX

Figure 7.10: Dihedral angles of prototypes in structural alphabets of length 5 with
number of prototypes from 10 to 50

118

CHAPTER 7. APPENDIX

Figure 7.11: Dihedral angles of prototypes in structural alphabets of length 5 with
number of prototypes from 60 to 100

119

CHAPTER 7. APPENDIX

Figure 7.12: Dihedral angles of prototypes in structural alphabets of length 6 with
number of prototypes from 10 to 50

120

CHAPTER 7. APPENDIX

Figure 7.13: Dihedral angles of prototypes in structural alphabets of length 6 with
number of prototypes from 60 to 100

121

CHAPTER 7. APPENDIX

Figure 7.14: Dihedral angles of prototypes in structural alphabets of length 7 with
number of prototypes from 10 to 50

122

CHAPTER 7. APPENDIX

Figure 7.15: Dihedral angles of prototypes in structural alphabets of length 7 with
number of prototypes from 60 to 100

123

CHAPTER 7. APPENDIX

Figure 7.16: Dihedral angles of prototypes in structural alphabets of length 8 with
number of prototypes from 10 to 50

124

CHAPTER 7. APPENDIX

Figure 7.17: Dihedral angles of prototypes in structural alphabets of length 8 with
number of prototypes from 60 to 100

Figure 7.18: Dihedral angles of prototypes in structural alphabets of length 9 with
number of prototypes from 10 to 50

125

CHAPTER 7. APPENDIX

Figure 7.19: Dihedral angles of prototypes in structural alphabets of length 9 with
number of prototypes from 60 to 100

Figure 7.20: Dihedral angles of prototypes in structural alphabets of length 10
with number of prototypes from 10 to 50

126

CHAPTER 7. APPENDIX

Figure 7.21: Dihedral angles of prototypes in structural alphabets of length 10
with number of prototypes from 60 to 100

7.3 Frequency of DSSP states in SAs with 20
prototypes

For each prototype of SAs with 20 prototypes, the frequencies of DSSP states per
amino acid position in fragments covered by the prototype are shown in Figures
from 7.22 to 7.35.

127

CHAPTER 7. APPENDIX

Figure 7.22: Frequency of DSSP states per amino acid position in clusters of SA
4_20 for clusters with id from 1 to 10

128

CHAPTER 7. APPENDIX

Figure 7.23: Frequency of DSSP states per amino acid position in clusters of SA
4_20 for clusters with id from 11 to 20

129

CHAPTER 7. APPENDIX

Figure 7.24: Frequency of DSSP states per amino acid position in clusters of SA
5_20 for clusters with id from 1 to 10

130

CHAPTER 7. APPENDIX

Figure 7.25: Frequency of DSSP states per amino acid position in clusters of SA
5_20 for clusters with id from 11 to 20

131

CHAPTER 7. APPENDIX

Figure 7.26: Frequency of DSSP states per amino acid position in clusters of SA
6_20 for clusters with id from 1 to 10

132

CHAPTER 7. APPENDIX

Figure 7.27: Frequency of DSSP states per amino acid position in clusters of SA
6_20 for clusters with id from 11 to 20

133

CHAPTER 7. APPENDIX

Figure 7.28: Frequency of DSSP states per amino acid position in clusters of SA
7_20 for clusters with id from 1 to 10

134

CHAPTER 7. APPENDIX

Figure 7.29: Frequency of DSSP states per amino acid position in clusters of SA
7_20 for clusters with id from 11 to 20

135

CHAPTER 7. APPENDIX

Figure 7.30: Frequency of DSSP states per amino acid position in clusters of SA
8_20 for clusters with id from 1 to 10

136

CHAPTER 7. APPENDIX

Figure 7.31: Frequency of DSSP states per amino acid position in clusters of SA
8_20 for clusters with id from 11 to 20

137

CHAPTER 7. APPENDIX

Figure 7.32: Frequency of DSSP states per amino acid position in clusters of SA
9_20 for clusters with id from 1 to 10

138

CHAPTER 7. APPENDIX

Figure 7.33: Frequency of DSSP states per amino acid position in clusters of SA
9_20 for clusters with id from 11 to 20

139

CHAPTER 7. APPENDIX

Figure 7.34: Frequency of DSSP states per amino acid position in clusters of SA
10_20 for clusters with id from 1 to 10

140

CHAPTER 7. APPENDIX

Figure 7.35: Frequency of DSSP states per amino acid position in clusters of SA
10_20 for clusters with id from 11 to 20

141

Bibliography

[1] UniProtKB/Swiss-Prot protein knowledgebase release 2021_01 statistics.
https://web.expasy.org/docs/relnotes/relstat.html. Accessed: 9
March 2021.

[2] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, and et al. Tensor-
Flow: Large-scale machine learning on heterogeneous systems, 2015. Software
available from tensorflow.org.

[3] C. C. Aggarwal. Data Mining. Springer International Publishing, 2015.

[4] B. Alberts, A. Johnson, and J. Lewis et al. Molecular Biology of the Cell.
Garland Science, 2002.

[5] W. R. Atchley, J. Zhao, A. D. Fernandes, and T. Drüke. Solving the protein
sequence metric problem. PNAS, 102(18):6395–6400, 2005.

[6] A. E. Badaczewska-Dawid, A. Kolinski, and S. Kmiecik. Computational re-
construction of atomistic protein structures from coarse-grained models. Com-
putational and Structural Biotechnology Journal, 18:162–176, 2020.

[7] H. Berman, K. Henrick, and H. Nakamura. Announcing the worldwide Protein
Data Bank. Nat Struct Mol Biol, 10(12):980, 2003.

[8] L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

[9] L. Breiman, J. Friedman, C. J. Stone, and R.A. Olshen. Classification and
Regression Trees. Chapman and Hall/CRC, 1984.

[10] C. Bystroff and D. Baker. Prediction of local structure in proteins using a
library of sequence-structure motifs. J Mol Biol, 281(3):565–77, 1998.

142

https://web.expasy.org/docs/relnotes/relstat.html

BIBLIOGRAPHY

[11] C.C. Chang and C.C Lin. LIBSVM: A library for support vector machines.
ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011.
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[12] T. Chen and C. Guestrin. XGBoost: A Scalable Tree Boosting System. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’16, page 785–794, New York, NY,
USA, 2016. Association for Computing Machinery.

[13] T. Chiu, D.P. Fang, J. Chenand Y. Wang, and C. Jeris. A Robust and
Scalable Clustering Algorithm for Mixed Type Attributes in Large Database
Environment. In Proceedings of the Seventh ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’01, page 263–
268, New York, NY, USA, 2001. Association for Computing Machinery.

[14] J. G. Voet D. Voet. Biochemistry. Wiley, 2010.

[15] A. G. de Brevern, C. Etchebest, and S. Hazout. Bayesian Probabilistic Ap-
proach for Predicting Backbone Structures in Terms of Protein Blocks. PRO-
TEINS: Structure, Function, and Genetics, 41:271–287, 2000.

[16] Q. Dong, X. Wang, L. Lin, and Y. Wang. Analysis and prediction of protein
local structure based on structure alphabets. Proteins: Structure, Function,
and Bioinformatics, 72(1):163–172, 2008.

[17] M. Dudev and C. Lim. Discovering structural motifs using a structural alpha-
bet: Application to magnesium-binding sites. BMC Bioinformatics, 8(106),
2007.

[18] D. Eisenberg. The discovery of the α-helix and β-sheet, the principal struc-
tural features of proteins. Proceedings of the National Academy of Sciences,
100(20):11207–11210, 2003.

[19] A. Eliasy and J. Przychodzen. The role of AI in capital structure to enhance
corporate funding strategies. Array, 6:100017, 2020.

[20] G. Erdős and Z. Dosztányi. Analyzing Protein Disorder with IUPred2A.
Current Protocols in Bioinformatics, 70(1):e99, 2020.

[21] A. K. Dunker et al. Intrinsically disordered protein. J Mol Graph Model,
19:26–59, 2001.

143

http://www.csie.ntu.edu.tw/~cjlin/libsvm

BIBLIOGRAPHY

[22] A. P. Joseph et al. A short survey on protein blocks. Biophys Rev, 2(3):137–
147, 2010.

[23] F. Pedregosa et al. Documentation for Scikit-learn: Machine Learning in
Python.

[24] F. Pedregosa et al. Scikit-learn: Machine Learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

[25] G. Faure et al. iPBAvizu: a PyMOL plugin for an efficient 3D protein struc-
ture superimposition approach. Source Code Biol, 5, 2019.

[26] I. Vetrivel et al. Knowledge-based prediction of protein backbone conforma-
tion using a structural alphabet. PLoS ONE, 12(11):e0186215, 2017.

[27] J. Barnoud et al. PBxplore: a tool to analyze local protein structure and
deformability with Protein Blocks. bioRxiv, 2017.

[28] K. Peng et al. Optimizing long intrinsic disorder predictors with protein evo-
lutionary information. Journal of Bioinformatics and Computational Biology,
3:35–60, 2005.

[29] M. Agathocleous et al. Protein Secondary Structure Prediction with Bidi-
rectional Recurrent Neural Nets: Can Weight Updating for Each Residue
Enhance Performance? In Harris Papadopoulos; Andreas S. Andreou; Max
Bramer, editor, 6th IFIP WG 12.5 International Conference on Artificial In-
telligence Applications and Innovations (AIAI), volume AICT-339 of Artificial
Intelligence Applications and Innovations, pages 128–137, Larnaca, Cyprus,
October 2010. Springer.

[30] M. V. Akhila et al. A structural entropy index to analyse local confor-
mations in intrinsically disordered proteins. Journal of Structural Biology,
210(1):107464, 2020.

[31] P. Romero et al. Sequence complexity of disordered protein. PROTEINS:
Structure, Function, and Genetics, 42:38–48, 2001.

[32] R. Linding et al. Protein disorder prediction: implications for structural
proteomics. Structure, 11:1453–1459, 2003.

144

BIBLIOGRAPHY

[33] S. C. Lovell et al. Structure validation by Cα geometry: ϕ, ψ and Cβ de-
viation. Proteins: Structure, Function, and Bioinformatics, 50(3):437–450,
2003.

[34] S.F. Altschul et al. Gapped BLAST and PSI-BLAST: a new generation of
protein database search programs. Nucleic Acids Research, 25(17):3389–3402,
09 1997.

[35] X. Wu et al. Top 10 algorithms in data mining. Knowledge and Information
Systems, 14:1–37, 2008.

[36] C. Etchebest, C. Benros, S. Hazout, and A. G. de Brevern. A structural
alphabet for local protein structures: improved prediction methods. Proteins,
59(4):810–27, 2005.

[37] F. Chollet et al. Keras, 2015. Software available from keras.io.

[38] J. S. Fetrow, M. J. Palumbo, and G. Berg. Patterns, structures, and amino
acid frequencies in structural building blocks, a protein secondary structure
classification scheme. Proteins, 27(2):249–71, 1997.

[39] Y. Freund and R. E. Schapire. A Decision-Theoretic Generalization of On-
Line Learning and an Application to Boosting. Journal of Computer and
System Sciences, 55(1):119–139, 1997.

[40] F.A. Gers, N.N Schraudolph, and J. Schmidhuber. Learning Precise Timing
with Lstm Recurrent Networks. J. Mach. Learn. Res., 3(null):115–143, March
2003.

[41] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[42] A. Graves. Supervised Sequence Labelling with Recurrent Neural Networks.
Springer, Berlin, Heidelberg, 01 2012.

[43] A. Graves and J. Schmidhuber. Framewise phoneme classification with bidi-
rectional LSTM and other neural network architectures. Neural Networks,
18(5-6):602–610, 2005.

[44] R. Heffernan, Y. Yang, K. Paliwal, and Y. Zhou. Capturing non-local interac-
tions by long short-term memory bidirectional recurrent neural networks for

145

http://www.deeplearningbook.org

BIBLIOGRAPHY

improving prediction of protein secondary structure, backbone angles, contact
numbers and solvent accessibility. Bioinformatics, 33(18):2842–2849, 2017.

[45] S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. Neural Com-
put., 9(8):1735–1780, 1997.

[46] International Business Machines Corporation. IBM InfoSphere Warehouse.
Creating mining models with Intelligent Miner Modeling.

[47] International Business Machines Corporation. IBM SPSS Modeler 18.2 Al-
gorithms Guide .

[48] International Business Machines Corporation. SPSS Modeler.

[49] D. R. Jandrlić, G. M. Lazić, N. S. Mitić, and Mi. D. Pavlović. Software
tools for simultaneous data visualization and T cell epitopes and disorder
prediction in proteins. Journal of Biomedical Informatics, 60:120–131, 2016.

[50] A. Jelović. RepeatsPlus — program for finding motifs and repeats in data
sequences. Journal of Bioinformatics and Computational Biology, 2021.

[51] A. M. Jelovic, N. S. Mitic, S. Eshafah, and M. V. Beljanski. Finding Sta-
tistically Significant Repeats in Nucleic Acids and Proteins. J Comput Biol,
25(4):375–387, 2018.

[52] W. Kabsch. A solution for the best rotation to relate two sets of vectors. Acta
Crystallographica Section B, 32:922–923, 1976.

[53] W. Kabsch and C. Sander. Dictionary of protein secondary structure: Pat-
tern recognition of hydrogen-bonded and geometrical features. Biopolymers,
22(12):2577–2637, 1983.

[54] G. Karypis. YASSPP: better kernels and coding schemes lead to improve-
ments in protein secondary structure prediction. Proteins, 64(3):575–86, 2006.

[55] G. V. Kass. An Exploratory Technique for Investigating Large Quantities of
Categorical Data. Journal of the Royal Statistical Society. Series C (Applied
Statistics), 29(2):119–127, 1980.

[56] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization,
2014.

146

BIBLIOGRAPHY

[57] T. Kohonen. The self-organizing map. Proceedings of the IEEE, 78(9):1464–
1480, 1990.

[58] R. Kolodny, P. Koehl, L. Guibas, and M. Levitt. Small libraries of protein
fragments model native protein structures accurately. J Mol Biol, 323(2):297–
307, 2002.

[59] M.A. Kramer. Autoassociative neural networks. Computers and Chemical
Engineering, 16(4):313–328, 1992. Neutral network applications in chemical
engineering.

[60] R. Linding, R. B. Russell, V. Neduva, and T. J. Gibson. GlobPlot: Ex-
ploring protein sequences for globularity and disorder. Nucleic Acids Res,
31(13):3701–3708, 2003.

[61] M Y. Lobanov and O. V. Galzitskaya. The Ising model for prediction of dis-
ordered residues from protein sequence alone. Physical Biology, 8(3):035004,
2011.

[62] M. Y. Lobanov, I. V. Sokolovskiy, and O. V. Galzitskaya. IsUnstruct: predic-
tion of the residue status to be ordered or disordered in the protein chain by
a method based on the Ising model. J Biomol Struct Dyn, 31(10):1034–1043,
2013.

[63] M. Basaldella et al. Bidirectional LSTM Recurrent Neural Network for
Keyphrase Extraction, pages 180–187. 01 2018.

[64] A. G. de Brevern M. M. Maljković, N. S. Mitić. Prediction of Structural
Alphabet Protein Blocks Using Data Mining. submitted, manuscript ID: ci-
2021-006267.

[65] N. Srinivasan M. Tyagi, A. de Brevern and B. Offmann. Protein structure
mining using a structural alphabet. Proteins: Structure, Function, and Bioin-
formatics, 71(2):920–937, 2008.

[66] C. Micheletti, F. Se, and A. Maritan. Recurrent Oligomers in Proteins: An
Optional Scheme Reconciling Accurate and Concise Backbone Representa-
tions in Automated Folding and Design Studies. PROTEINS: Structure,
Function, and Genetics, 40:662–674, 2000.

147

BIBLIOGRAPHY

[67] B. Mészáros, G. Erdős, and Z. Dosztányi. IUPred2A: context-dependent
prediction of protein disorder as a function of redox state and protein binding.
Nucleic Acids Research, 46(W1):W329–W337, 2018.

[68] S. C. Nyburg. Some uses of a best molecular fit routine. Acta Crystallographica
Section B, 30(1):251–253, 1974.

[69] B. Offmann, M. Tyagi, and A. de Brevern. Local Protein Structures. Current
Bioinformatics, 2:165–202, 2007.

[70] J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81–106, 1986.

[71] R. J. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1993.

[72] G. N. Ramachandran, C. Ramakrishnan, and S. Viswanathan. Stereochem-
istry of polypeptide chain configurations. J Mol Biol, 7:95–9, 1963.

[73] H. Rangwala, C. Kauffman, and G. Karypis. svmPRAT: SVM-based Protein
Residue Annotation Toolkit. BMC Bioinformatics, 10:439, 2009.

[74] J. S. Richardson. The Anatomy and Taxonomy of Protein Structure. vol-
ume 34 of Advances in Protein Chemistry, pages 167–339. Academic Press,
1981.

[75] M. Rooman, J. Rodriguez, and S. Wodak. Automatic definition of recurrent
local structure motifs in proteins. J Mol Biol, 213(2):327–336, 1990.

[76] J. Schuchhardt, G. Schneider, J. Reichelt, D. Schomburg, and P. Wrede. Local
structural motifs of protein backbones are classified by self-organizing neural
networks. Protein Eng, 9(10):833–42, 1996.

[77] M. Schuster and K.K. Paliwal. Bidirectional recurrent neural networks. IEEE
Transactions on Signal Processing, 45(11):2673–2681, 1997.

[78] J. Shafer, R. Agrawal, and M. Mehta. SPRINT: A Scalable Parallel Classifier
for Data Mining. In VLDB Conference, pages 544–555, 1996.

[79] PN. Tan, M. Steinbach, A. Karpatne, and V. Kumar. Introduction to Data
Mining (2nd Edition). Pearson, 2nd edition, 2018.

148

BIBLIOGRAPHY

[80] R. Thomson, T.C. Hodgman, Z. R. Yang, and A. K. Doyle. Characterizing
proteolytic cleavage site activity using bio-basis function neural networks.
Bioinformatics, 19(14):1741–1747, 2003.

[81] CH Tung, JW Huang, and JM. Yang. Kappa-alpha plot derived structural
alphabet and BLOSUM-like substitution matrix for rapid search of protein
structure database. Genome Biol, 8, 2007.

[82] R. Unger, D. Harel, S. Wherland, and J. L. Sussman. A 3D building blocks
approach to analyzing and predicting structure of proteins. PROTEINS:
Structure, Function, and Genetics, 5:355–373, 1989.

[83] I. Walsh, A. J. M. Martin, T. Di Domenico, and S. C. E. Tosatto. ESpritz:
accurate and fast prediction of protein disorder. Bioinformatics, 28(4):503–
509, 2012.

[84] G. Wang and R. L. Dunbrack Jr. PISCES: a protein sequence culling server.
Bioinformatics, 19:1589–1591, 2003.

[85] G. Wang and R. L. Dunbrack Jr. PISCES: recent improvements to a PDB
sequence culling server. Nucleic Acids Res, 33:W94–W98, 2005.

[86] C.M. Wilmot and J.M. Thornton. β-Turns and their distortions: a proposed
new nomenclature. Protein Engineering, Design and Selection, 3(6):479–493,
05 1990.

[87] Z. R. Yang, R. Thomson, P. McNeil, and R. M. Esnouf. RONN: the bio-
basis function neural network technique applied to the detection of natively
disordered regions in proteins. Bioinformatics, 21(16):3369–3376, 06 2005.

[88] O. Zimmermann and U. H. E. Hansmann. LOCUSTRA: Accurate Predic-
tion of Local Protein Structure Using a Two-Layer Support Vector Machine
Approach. Journal of Chemical Information and Modeling, 48(9):1903–1908,
2008.

149

Biografija autora

Mirjana Maljković rođena je 13. novembra 1986. godine u Kanberi, Australija.
Osnovnu školu i gimnaziju završila je u Beogradu. Školske 2005/2006. godine
upisala je osnovne akademske studije na Matematičkom fakultetu u Beogradu,
smer Informatika, i diplomirala je školske 2007/2008. godine sa prosekom 9,00.

Školske 2008/2009. godine upisala je master akademske studije na Matem-
atičkom fakultetu u Beogradu, smer Informatika. Master akademske studije za-
vršila je 2010. godine odbranom master rada pod naslovom „Dizajn i imple-
mentacija podsistema za nastavničke beleške sistema Studinfo” pod rukovodstvom
prof. dr Saše Malkova. Prosečna ocena na master studijama je 9,77.

Školske 2010/2011. godine je upisala doktorske akademske studije na Matem-
atičkom fakultetu, smer Informatika. Položila je sve ispite predviđene planom i
programom doktorskih studija sa prosečnom ocenom 10,00.

Od 2009. godine zaposlena je na Matematičkom fakultetu Univerziteta u
Beogradu kao saradnik u nastavi na Katedri za računarstvo i informatiku; od 2011.
godine kao asistent u nastavi na Katedri za računarstvo i informatiku, a od 2018.
godine kao asistent praktične nastave na Katedri za računarstvo i informatiku.
Do sada je učestvovala u izvođenju vežbi iz sledećih predmeta: Relacione baze
podataka, Programiranje baza podataka, Razvoj softvera, Istraživanje podataka i
Istraživanje podataka 1.

Osnovne oblasti interesovanja su joj baze podataka, istraživanje podataka i
bioinformatika.

Прилог 1.

Изјава о ауторству

Потписани-a ______________________

број индекса _______________________________

Изјављујем

да је докторска дисертација под насловом

 резултат сопственог истраживачког рада,

 да предложена дисертација у целини ни у деловима није била предложена
за добијање било које дипломе према студијским програмима других
високошколских установа,

 да су резултати коректно наведени и

 да нисам кршио/ла ауторска права и користио интелектуалну својину
других лица.

 Потпис докторанда

У Београду, _________________

Прилог 2.

Изјава o истоветности штампане и електронске

верзије докторског рада

Име и презиме аутора ___

Број индекса ___

Студијски програм __

Наслов рада ___

Ментор ___

Потписани/а __

Изјављујем да је штампана верзија мог докторског рада истоветна електронској

верзији коју сам предао/ла за објављивање на порталу Дигиталног

репозиторијума Универзитета у Београду.

Дозвољавам да се објаве моји лични подаци везани за добијање академског

звања доктора наука, као што су име и презиме, година и место рођења и датум

одбране рада.

Ови лични подаци могу се објавити на мрежним страницама дигиталне

библиотеке, у електронском каталогу и у публикацијама Универзитета у Београду.

 Потпис докторанда

У Београду, ________________________

Прилог 3.

Изјава о коришћењу

Овлашћујем Универзитетску библиотеку „Светозар Марковић“ да у Дигитални
репозиторијум Универзитета у Београду унесе моју докторску дисертацију под
насловом:

која је моје ауторско дело.

Дисертацију са свим прилозима предао/ла сам у електронском формату погодном
за трајно архивирање.

Моју докторску дисертацију похрањену у Дигитални репозиторијум Универзитета у
Београду могу да користе сви који поштују одредбе садржане у одабраном типу
лиценце Креативне заједнице (Creative Commons) за коју сам се одлучио/ла.

1. Ауторство

2. Ауторство - некомерцијално

3. Ауторство – некомерцијално – без прераде

4. Ауторство – некомерцијално – делити под истим условима

5. Ауторство – без прераде

6. Ауторство – делити под истим условима

(Молимо да заокружите само једну од шест понуђених лиценци, кратак опис
лиценци дат је на полеђини листа).

Потпис докторанда

У Београду, ________________________

	Introduction
	Data mining methods
	Data mining
	Format of dataset
	Classification
	Clustering

	Structural alphabets
	Protein structure
	Overview of existing structural alphabets
	Protein Blocks

	New Protein Blocks predictors
	Material
	PBs prediction models
	Analysis of PBs prediction models

	Development of new structural alphabets
	Process of the development of structural alphabets
	Material
	Development of structural alphabets
	Development of predictors for structural alphabets
	Comparison of structural alphabet 5_16 and Protein Blocks

	Conclusion
	Appendix
	Size of clusters which corresponds to prototypes of structural alphabets
	Graphical presentations of SA prototypes
	Frequency of DSSP states in SAs with 20 prototypes

	Bibliography

