УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ

Немања Ракић

МОДЕЛОВАЊЕ ОПТИЧКИХ СПЕКТАРА АКТИВНИХ ГАЛАКТИЧКИХ ЈЕЗГАРА ТИПА 1

Докторска дисертација

Београд, 2022.

UNIVERSITY OF BELGRADE FACULTY OF MATHEMATICS

Nemanja Rakić

MODELLING OPTICAL SPECTRA OF TYPE 1 ACTIVE GALACTIC NUCLEI

Doctoral Dissertation

Belgrade, 2022.

Ментор, члан комисије

др Драгана Илић ванредни професор Универзитет у Београду Математички факултет

Члан комисије

др Лука Ч. Поповић научни саветник Астрономска опсерваторија Београд редовни професор Универзитет у Београду Математички факултет

Члан комисије

др Јелена Ковачевић-Дојчиновић виши научни сарадник Астрономска опсерваторија Београд

Датум одбране: _____

Пре свега желим да се захвалим мојој менторки др Драгани Илић, која је све време веровала у мене. Велико хвала на помоћи, стрпљењу и енергији уложеној да ова теза угледа светлост дана. Такође, дугујем велику захвалност др Луки Ч. Поповићу од којег сам поред науке научио и многе важне животне лекције. Захвалност дугујем др Јелени Ковачевић-Дојчиновић на корисним сугестијама и консултацијама током израде тезе. Не могу да не поменем Ђованија Ла Муру који који ми је дао иницијалну идеју за развој FANTASY кода, као и Данијела Вукотића који је креирао његов лого. Колегама са ПМФ-а у Бањалуци захвалан сам на подршци и саветима.

На крају велику захвалност дугујем породици и пријатељима, посебно мојој супрузи Бојани, Огњену и Вањи јер без вас ово све не би имало смисла. **Наслов дисертације:** Моделовање оптичких спектара активних галактичких језгара типа 1

Сажетак: Активно галактичко језгро (АГЈ) представља центар галаксије где супермасивна црна рупа усисава материју у виду акреционог диска, одакле се емитује снажно електромагнентно зрачење у широком опсегу таласних дужина. Зрачење високих енергија способно је да јонизује околни гас који емитује широке линије у оптичком делу спектра. Циљ ове дисертације је моделовање сложених оптичких спектра великог броја АГЈ типа 1 (АГЈ са широким емисионим линијама), и испитивање физичких карактеристика њиховог широколинијског емисионог региона. Разумевање физичких особина овог региона, као и физике целог АГЈ, је од значаја за разумевање формирања и еволуције галаксија.

Да би се проучавао широколинијски регион на основу емисионих линија које долазе из њега, потребно је пажљиво издвојити ове широке линије, моделирајући допринос звездане компоненте галаксије домаћина, континуума, широких, уских и сателитиских линија. То нас је мотивисало да развијемо специјалне процедуре и код FANTASY за моделирање спектара АГЈ типа 1. Овај код је примењен на 1500 АГЈ из SDSS базе, где је демонстрирано да аутоматизовано истовремено моделовање свих емисионих компоненти у оптичком спектру омогућава поуздано мерење спектралних параметара, што може имати велику примену за будућа истраживања великог броја АГЈ добијених у оквиру долазећих великих спектроскопских прегледа неба.

Физички услови у широколинијском региону проучавани су кроз анализу још увек необјашњене (анти)корелација између еквивалнетне ширине емисионих линија и флукса континуума (тзв. Болдвинов ефекат). Потврђена је тврдња да сопствени Болдвинов ефекат постоји код Балмерових линија водоника код АГЈ типа 1, и да је потенцијално физичко објашњење овог ефекта присуство додатног нејонизујућег зрачења у оптичком континууму, које потиче из широколинијског региона. Значајан резултат је нови јавно доступан програмски пакет FANTASY, који може имати велику примену у будућој спектралној анализи АГЈ.

Кључне речи: Активна галактичка језгра, супермасивне црне рупе, спектроскопија, емисионе линије

Научна област: Астрономија

Ужа научна област: Астрофизика

УДК број: 524.882:[52-64+52-655](043.3)

Dissertation title: Modelling optical spectra of Type 1 Active Galactic Nuclei

Abstract: Active Galactic Nuclei (AGN) are galaxy cores in which a supermassive black hole is being surrounded with an accretion disk, which emits powerful continuum emission. This continuum ionizes the surrounding gas which than emits the broad lines, detected in the optical band. The aim of this thesis is to model complex optical spectra of large numbers of type 1 AGNs (AGNs with broad emission lines) and study physical properties of the emitting gas, so-called broad line region. Understanding the physics of the broad line region, as well as the physics of AGN as a whole is important for understanding the galaxy formation and evolution.

This thesis investigate a large sample of type 1 AGNs taken from the SDSS spectral database. In total, over 1500 spectra were analyzed, for which a completely new software for modeling of optical AGN spectra (named FANTASY) was developed. Automated simultaneous modeling of all emission components in the optical spectrum enables reliable measurement of spectral parameters, which can have significant application in future investigation of large AGN samples, collected within the upcoming large spectroscopic sky surveys.

The physical properties in the broad line region were studied through the analysis of a still unexplained (anti)correlation between the equivalent width of the emission lines and the continuum flux (the so-called Baldwin effect). It has been confirmed that the intrinsic Baldwin effect exists in the Balmer hydrogen lines in type 1 AGNs, and that a potential physical explanation for this effect might be presence of an additional non-ionizing optical continuum emission, which originates from the broad line region. Finally, the significant outcome of this thesis is is the new publicly available software package FANTASY, which can be widely used in the future spectral analysis of AGN.

Keywords: Active Galactic Nuclei, supermassive black holes, spectroscopy, emission lines

Research area: Astronomy

Research sub-area: Astrophysics

UDC number: 524.882:[52-64+52-655](043.3)

Садржај

1	Увс	Увод 8					
	1.1	Уводна ра	азматрања, предмет и циљеви докторске дисертације	8			
	1.2	Особине,	класификација и структура АГЈ	10			
		1.2.1 Кл	асификација АГЈ	11			
		1.2.2 Ст	руктура и унификациони модел АГЈ	16			
		1.2.3 Гла	авни низ квазара	19			
	1.3	Емисија у	[,] континууму код АГЈ	20			
	1.4	Промењи	вост АГЈ	23			
	1.5	Доступни	кодови за моделовање АГЈ	24			
2	Особине широколинијског региона 26						
	2.1	Фотојониз	зација и емисионе линије	26			
	2.2	Болдвино	в ефекат	27			
		2.2.1 Гл	обални Болдвинов ефекат	29			
		2.2.2 Co	пствени Болдвинов ефекат	32			
	2.3	Геометриј	а и кинематичке особине широколинијског региона	34			
		2.3.1 Пр	офили широких емисионих линија	34			
		2.3.2 Ут	ицај супермасивне црне рупе на облике спектралних				
		ЛИ	нија	35			
		2.3.3 Pe	верберационо мапирање	36			
		2.3.4 До	датни нејонизујући континуум	42			
3	Пос	Посматрачки подаци 44					
	3.1	Подаци из SDSS-RM пројекта					
	3.2	Подаци из	з SDSS каталога DR16	45			
4	Ана	лиза и м	етоде	49			
	4.1	FANTASY D	рограмски пакет	49			
		4.1.1 Уч	итавање података	50			
		4.1.2 Пр	оипрема спектара за фитовање	50			
		4.1.3 От	клањање утицаја зрачења галаксије домаћина	51			
		4.1.4 Mo	оделовање и фитовање спектра	51			
		4.1.5 Te	хничке карактеристике FANTASY програмског пакета	56			
	4.2	Модели за	а фитовање спектара	57			
		4.2.1 Пр	рипрема спектара за фитовање	57			
		4.2.2 Ku	нематика Н α и Н β широколинијског региона у SDSS узорку АГЈ				
		ТИ		58			
		4.2.3 Mo	одел примењен за мерење сопственог Болдвиновог				
		еф	екта	60			

5	Рез	ултати	63			
	5.1	Употреба FANTASY програмског пакета за различите АГЈ типа 1	63			
	5.2 Сопствени Болдвинов ефекат		66			
		5.2.1 Мерење сопственог Болдвиновог ефекта	67			
		5.2.2 Корелације флуксева линија и континуума	68			
		5.2.3 Однос флуксева Н $lpha/{ m H}eta$ у зависности од флукса континуума	71			
		5.2.4 Едингтонов однос и сопствени БЕФ	71			
		5.2.5 Глобални Болдвинов ефекат	73			
	5.3 Испитивање кинематике широколинијског					
		региона	74			
6	Дискусија					
	6.1	Могућности и предности FANTASY програмског				
		пакета	87			
	6.2	Могући узроци сопственог Болдвиновог ефекта	88			
	6.3	Кинематичке особине широколинијског региона	90			
7	Рез	зиме и закључак 92				
8	Нау	Научни радови из области истраживања презентованог у дисертацији 🤇				
\mathbf{A}	А Пратеће табеле и графици за сопствени Болдвинов ефекат					
Б	Пратеће табеле и графици за испитивање кинематике широколинијског					
	региона					

Поглавље 1

Увод

1.1 Уводна разматрања, предмет и циљеви докторске дисертације

Активне галаксије или активна галактичка језгра (АГЈ) су и, након више деценија проучавања, у главом фокусу истраживања модерне астрономије и астрофизике. Они су најудаљенији, а самим тим и најсјанији посматрани објекти у свемиру (Osterbrock & Ferland 2006; Netzer 2013). До данас је познато преко милион ових објеката (детектовано фотометријским методама) и неколико стотина хиљада посматраних помоћу спектроскопских метода. Број детектованих АГЈ ће драстично да се повећа са новим великим прегледима неба, од којих издвајамо пројекат Вера Рубин опсерваторије за десетогодишњи континуиран преглед великог дела неба са јужне полулопте, тзв. LSST (Large Suvery of Space and $Time)^1$ пројекат (Ivezić et al. 2019), који ће детектовати преко десет милиона квазара, од којих значајан број њих на јако великим растојањима, практично у доба формирања галаксија и рејонизације универзума (Brandt et al. 2018). LSST ће бити употпуњен са неколико великих спектралних прегледа неба, а један обећавајући пројекат је Maunakea Spectroscopic Explorer² (MSE) који планира спектроскопско претраживање неба телескопом пречника огледа од 11 метара (The MSE Science Team et al. 2019). Ово истраживање планира посматрања и у временском и спектралном домену, укључујући и инфрацрвени опсег, који је важан за испитивања АГЈ на великом црвеном помаку.

АГЈ представљају само мали удео у укупном броју галаксија (Netzer 2013; Popović & Ilić 2017), али упркос томе имају велики значај за истраживање свемира у целини. Важно је истаћи да будући да се сматра да се активна фаза у галактичком језгру јавља код свих галаксија у неком периоду еволуције, разумевање структуре, еволуције и процеса у АГЈ, и посебно утицаја на околну галаксију, је од велике важности за успостављање глобалне слике о формирању и еволуцији галаксија, које представљају основне градивне јединице у целом Универзуму.

Огромна енергија коју ови објекти емитују, се може објаснити акрецијом материје на супермасивну црну рупу која се налази у центру АГЈ-а (Salpeter 1964; Lynden-Bell 1969). Супермасивна црна рупа, заједно са акреционог диска јонизује део тих гасовитих јонизованог гаса и прашине. Зрачење из акреционог диска јонизује део тих гасовитих региона. Области које се налазе у непосредној близини црне рупе (унутар једног парсека), емитује широке линије, које представљају јединствену особину спектара АГЈ. Ту област јонизованог гаса називамо широколинијски регион. Поред широких линија, у спектрима ових објеката, налазимо и уске емисионе линије, које долазе из области доста даље од

¹За детаље видети званичну страницу http://lsst.org

²https://mse.cfht.hawaii.edu/

централне црне рупе, коју називамо усколинијски регион.

Код једне групе АГЈ, класификоване као АГЈ типа 1, посматрано је присуство широких емисионих линија у оптичком делу спектра. Управо АГЈ типа 1 су предмет истраживања у овој дисертацији. Емисионе линије су веома широке, пошто настају у различитим емисионим областима где брзине гаса достижу и до неколико десетина хиљада km s⁻¹, што доводи до тога да су линије обично преклопљене и формирају комплексне структуре (Osterbrock & Ferland 2006). Прецизно издвајање емисионих линија, мерење њихових параметара, анализа и интерпретација у циљу одређивања физичких и кинематичких особина региона који их емитују, је циљ приказане дисертације. Додатно, параметри спектралних линија се под одређеним физичким условима, могу користити за мерење масе супермасивне црне рупе (видети прегледни рад Ророvić (2020), као и референце у раду), што је од великог значаја за истраживање структуре и еволуције галаксија.

Посматран оптички спектар АГЈ је комплексан и садржи зрачење звездане компоненте околне галаксије (тзв. галаксије домаћина), континуално зрачење из акреционог диска, као и зрачење из усколинијског и широколинијског емисионог региона АГЈ у којима настаје велики број широких и уских емисионих линија. За правилно издавајање спектралних параметара (нпр. ширина, асиметрија или флукс линије), неопходно је моделовати оптичке спектре са свим наведеним компонентама истовремено. Ова дисертација се бави моделовањем оптичких спектара АГЈ типа 1, издвајањем поуздане информације из сложеног оптичког спектра и анализом спектралних параметара у циљу испитивања физичких особина емисионог региона код АГЈ. Испитивање физичких услова у емисионом гасу врши се кроз проучавање порекла посматраних корелација и веза између флукса широких емисионих линија и континуалног зрачења, нпр. Болдвинов ефекат (БЕФ), који представља још увек необјашњену (анти)корелацију између еквивалнетне ширине емисионих линија и флукса континуума (Baldwin 1977). Сопствени Болдвинов ефекат представља антикорелацију између екивалентне ширине линије и флукса континуума у близини дате линије, за појединачан варијабилан објекат. Прва истраживања сопственог БЕФ су одрађена на узорку од 6 АГЈ типа 1, са различитим профилима широких линија, посматрани дуги низ година. Показано је да геометрија широколинијског региона вероватно није узрок сопственог БЕФ, да се сопствени БЕФ мења са временом, да сопствени и глобални БЕФ нису повезани, те да је могући узрок БЕФ додатно нејонизујуће зрачење у оптичком континууму. Ови резултати објављени су Rakić et al. (2017). Додатно, испитујемо кинематичке особине широколинијског региона, односно да ли је кретање гаса који емитује линије руковођен гравитацијом супермасивне црне рупе. На крају, важно је проверити под којим условима је могуће издвојити корисну и поуздану информацију из сложене емисије АГЈ у оптичком делу спектра, стога смо моделирали оптичке спектре различитих АГЈ типа 1. Предложена истраживања су урађена на великом узорку оптичких спектара АГЈ типа 1, преузетих из Sloun Digital Sky Survey - SDSS базе података³, која представља свеобухватну спектралну базу звезда и галаксија. Конкретно, користићемо један од поседњих каталога Data Release 16 (Ahumada et al. 2020), као и резултате дугорочног праћења АГЈ, ради добијања спекатара из више епоха за један објекат (пројекат Reverberation Mapping - SDSS-RM, Shen et al. 2015).

За потребе наведене анализе, неопходно је применити специјализован програмски пакет, који је развијен током рада на овој дисертацији. Програмски пакета за моделовање оптичких спектара AГJ под називом FANTASY (Fully Automated pythoN Tool for AGN Spectral analYsis) је отвореног типа и доступан је широј научној заједници⁴. Програм омогућава аутоматизовано истовремено моделовање свих компоненти у оптичком спектру, и самим тим поуздано мерење спектралних параметара (нпр. ширина, асиметрија или флукс лини-

³http://sdss.org

⁴https://fantasy-agn.readthedocs.io/en/latest/

je). Такође посебно је обраћена пазња на одређивање доприноса звездане емисије околне галаксије, који треба одузети од посматраног спектра.

FANTASY програмски пакет може имати велику примену у будућој спектралној анализи посматраних АГЈ, кроз програме дугорочног посматрања и праћења појединачних АГЈ, а посебно за истраживања великог броја АГЈ добијених у оквиру долазећих великих спектроскопских прегледа неба, као што је већ поменути MSE пројекат. Овај пројекат је специфичан будући да ће имати један од највећих спектрографа за истовремено посматрање више објеката (енг. *multi-object spectroscopy* - MOS). Наиме MOS инструменти су будућност модерне спектроскопије, нпр. MSE ће моћи да посматра преко 4000 објеката истовремено. Један од главних научних задатака MSE је истраживање промењивости, односно мерење кривих сјаја код 5000 АГЈ током периода од неколико година, са циљем реверберационог мапирања и одређивања унутрашње структуре (Shen et al. 2019а). Други значајан пример пројекта, чији један од главних пројеката је праћење око 131,000 квазара са циљем одређивања масе супермасивне црне рупе у центру АГЈ (Ahumada et al. 2020).

Овде дајемо кратак опис структуре дисертације. У наставку увода следи општи приказ АГЈ. Даље у поглављу 2 дајемо теоријске основе истраживања, као што је опис физичких и кинематичких особина широколинијског региона, те резимирамо досадашња истраживања. У поглављу 3 детаљно описујемо коришћене податке, док у поглављу 4, описујемо методе обраде података и дајемо приказ FANTASY програмског пакета и примере употребе. Детаљане резултате моделирања оптичких спектара различитих АГЈ типа 1, као и истраживања сопственог Болдвиновог ефекта и кинематике широколинијског региона приказујемо у поглављу 5. У поглављу 6 дискутујемо добијене резултате. На крају (поглавље 7), дајемо резиме и основне закључке у раду, као и предлоге за будућа истраживања. Дисертација садржи свеобухватан списак коришћене литературе, као и Додатак, где су приложени додатни графици, као и пратеће табеле.

1.2 Особине, класификација и структура АГЈ

Први оптички спектар АГЈ снимио је Фет још 1909. године (Fath 1909). Он је у спектру галаксије NGC1068 приметио снажне емисионе линије. Касније је Карл Сејферт пручавао 6 необичних галактичких нуклеарних региона, што представља прво систематско проучавање АГЈа (Seyfert 1943). Разлике у оптичким спектрима АГЈ довело је до класификације ових објеката на Сејферт 1 и Сејферт 2 галаксије. Главна разлике је у томе што Сејферт 1 галаксије поред уских линија (дозвољене и забрањене⁵) у спектру поседују и широке линије са ширином на половини максимума (Full Width at Half Maximum – FWHM) интензитета преко 1000 kms⁻¹. Једно од најважнијих тренутака у историји астрономије представља откриће квазара⁶. (Schmidt 1963). Квазари у оптичком и радио опсегу електромагнетног зрачења изгледају као тачкасти објекти, слично звездама, међутим њихови спектри се значајно разликују од звезданих. Испоставило се, да су емисионе линије, које се јављају у овим објектима, одговарају водонику и осталим елементима који се јављају у другим астрономским изврома, али да су значајно померени ка црвеном делу спектра. Оптички спектри квазара су слични онима код Сејферт 1 галаксија, са истакнутим широким линијама, али прично слабијим уским линијама. Будући да многи квазари имају велике црвене помаке, многе карактеристике које су опажене у видљивом делу спектра, запра-

⁵Забрањене линије су спектралне линије емитоване од стране атома, настале као недозвољен прелаз према селекционим правилима атомске физике.

⁶Име квазар потиче од њихове особине, да слично звездама изгледају као тачкасти објекти (QSO – quasi-stellar-objects).

во одговарају ултраљубичастом делу спектра. Квазари показују и спектралне ексцесе у инфрацрвеном делу спектра, као и на другим таласним дужинама. Око 10% квазара су снажни извори зрачења у радио домену и њих називамо радио јаки квазари (Osterbrock & Ferland 2006). У наставку дајемо основну класификацију АГЈ, као и главне особине различитих класа.

1.2.1 Класификација АГЈ

Сејфертове галаксије су спиралне галаксије (обично морфолошки класификоване као Sb или SBb тип галаксије) са изузенто сјајним језгром. Њихови спектри показују снажне емисионе линије вишеструко јонизованих атома, што нам указује да јонизујући континуум се разликује од звезданог, односно да је нетермалног порекла. Сејферт 1 галаксије показује широке, као и уске, емисионе линије. Њихове широке емисионе линије имају значајно широка крила (неколико хиљада km s⁻¹) узрокована Доплеровим ширењем које се јавља као последица кретања емисионог гаса (слика 1.1). Израчена енергија ових објеката је прилично равномерно распоређена преко целог посматраног електромагнетног спектра, од гама до радио зрачења. Промена флукса са фреквенцијом се може описати једноставном степеном функцијом:

$$F_{\nu} = k\nu^{-\alpha},\tag{1.1}$$

где F_{ν} представља флукс континуума, k је константа, ν – фреквенција и α спектрални индекс који је обично \approx 1. Из једначине 1.1 прозилази да је јако слабо зрачење ових објеката у радио домену. Њихова уобичајена болометријска магнитуда је $M_{\rm bol} \leq -21$.

Спектри Сејферт 2 галаксија немају широке емисионе линије. Све линије, које долазе из дозвољних или забрањених прелаза унутар атома, су уске и приближно исте ширине (слика 1.1). Континуум је значајно слабији и равнији у односу на Сејферт 1 галаксије ($\alpha \geq 1.5$). Болиметријска магнитуда је углавном $M_{\rm bol} \leq -21$. У завсности од односа интензитета уских и широких линија, Сејферт галаксије се могу поделити на подкласе, на пример: Сејферт 1.1, Сејферт 1.2, итд. (Osterbrock & Ferland 2006).

Специјална подкласа Сејферт 1 галаксија су Сејферт 1 галаксије са уским линијама (енг. *NLSy1 – Narrow Line Seyfert 1*). Њихови спектри су слични класичним Сејферт 1 галаксијама (централни спектар на слици 1.1), али са много ужим спектралним линијама које долазе од дозвољених атомских прелаза (Osterbrock & Pogge 1985; Pogge 2000).

Практично, NLSY1 галаксије се класификују као такве ако задовољавају следећа два критеријума :

$F([O III]\lambda 5007)/F(H\beta) < 3$ FWHM(H β) < 2000 kms⁻¹

где F представља флукс линије, а FWHM пуну ширину на полувисини линије. Линије двоструко јонизованог кисеоника [O III] $\lambda\lambda$ 4959,5007ÅÅ представљају једне од најистакнутијих линија у оптичким спектрима АГЈ (Dimitrijević et al. 2007), међутим NLSY1, поред нешто ужих широких линија, показују и слабије [O III] линије.

Многе галаксије имају језгра која личе на Сејферт 2 галаксије, са забрањеним линијама (типична ширина од 200 до 400 km s⁻¹) које долазе из ниже јонизованих емисионих региона. Због наведених карактеристика такви објекти се зову АГЈ слабог сјаја или линери (енг. Low Ionization Nuclear Emission-line Region – LINER), што би у преводу значило нискојозоване емисионе области (Heckman et al. 1980). Језгра линера смештена су у центру 80% спиралних галаксија (Sa, Sb, Sc) и елиптичних галаксија. Дуго се сматрало да

Слика 1.1: Поређење изгледа оптичког спектара Сејферт 1 и 2 објеката, као и NLSY1 галаксија (Pogge 2000).

Слика 1.2: Слика језгра Cygnus A галаксије направљнеа Very Large Array (VLA) телескопом. Слика је преузета са: https://public.nrao.edu/gallery/vla-image-of-torus-in-cygnus-a/

су линери посебан феномен, али данас је опште прихваћено да они представљају Сејферт галаксије ниског сјаја. У неколико оваквих галаксија примећена је и широка Н α линија, тако да слично као код Сејферт галаксија, линери се деле у две групе (Ho et al. 1997a,b).

Посматрачки, линери су дефинисани као активне галаксије које задовољавају следеће услове (Krolik 1999):

$$\begin{split} F([{\rm O\,III}]\lambda 5007)/F({\rm H}\beta) < 3 \\ F([{\rm O\,I}]\lambda 6300)/F({\rm H}\alpha) > 0.05 \\ F([{\rm Si\,II}]\lambda\lambda 6716, 6731)/F({\rm H}\beta) > 0.4 \\ F([{\rm N\,II}]\lambda 6583)/F({\rm H}\alpha) > 0.5, \end{split}$$

тј, показују снажне линије које настају из забрањених прелаза.

Радио галаксије откривене су 40их година од стране ратних радарских инжењера. Било је потребно још десетак година да, у то време нова област астрономије – радио астрономија, почне са њиховим истраживањем. Прва откривена радио галаксија, до данас најсјајнија позната, названа је **Cygnus A** (слика 1.2) АГЈ објекти (Сејферт галаксије и квазари) на основу јачине зрачења у радио домену могу да се деле на радио јаке и радио слабе. Радио јаки објекти се још називају радио галаксијама. Слично као код Сејферт галаксија, радио галаксије се могу поделити на два типа у зависности ширине емисионих линија. Тип 1 представљају радио галаксије са широким линијама (енг. Broad Line Radio Galaxies – BLRG), док су тип 2 радио галаксије са уским линијама (енг. Narrow Line Radio Galaxies – NLRG). Као и код Сејферт галаксија постоје и радио галаксије са слабим линијама (енг. Weak Line Radio Galaxies – WLRG) које представљају еквивалент већ споменутим линерима. Основне разлика радио и Сејферт галаксија представља чињеница да Сејферт галаксије обично су врло слаби радио извори, такође, галаксије домаћини код Сејферт галаксија обично су спиралне галаксије док су код радио галаксија елиптичне галаксије.

Поред већ споменутих типова радио галаксија постоје и радио галаксије са радио овалима, који представљају структуре овалног облика, симетрично рапосређених у односу на језгро удаљени једни од других неколико стотина парсека. Ове области повезане су радио млазевима са језгром и на тај начин овали добијају велике количине материје (слика 1.2).

Поебно интересантан тип радио галаксија представљају блазари. Њих карактерише веома јако и променљиво зрачење у континууму. Емисионе линије или су врло слабе или их

Слика 1.3: Изглед оптичког спектра разних типова АГЈ. Тип АГЈ је написан на сваком од панела. Слика је преузета из Ророvić & Ilić (2017).

Слика 1.4: Приказ унификационог модела АГЈ. У центру АГЈ налази се црна рупа окружена акреционим диском који прелази у непровидни торус прашине. Унутар торуса прашине прикривен је широколинијски регион. На мало већој удаљености налази се усколинијски регион, којег торус не може у поптпуности да заклони. Поједини објекти (обично радио галаксије) имају млаз (или млазеве) релативистичких честица који избијају из центра АГЈ. Према овом моделу, детектујемо различите објекте у зависности под којим углом посматрамо, односно у зависности оријентације АГЈ у односу на посматрача. Ти углови и објекти су означени на слици. Слика је преузета из књиге "Активна галактичка језгра"Ророvić & Ilić (2017).

уопште нема у оптичком и ултраљубичастом делу спектра. Изостанак емисије у линијама може значити да ови објекти немају емисионе регионе или су линије у потпуности уроњене у континуум.

Квазари представљају најсјајнију класу АГЈ. Мали проценат квазара (5–10%) су снажни радио извори. Зрачење из језгра доминира у односу на галаксију домаћина. Њихови спектри су слични спектрима Сејферт галаксијама. Основне разлике у односу на спектре Сејфер галаксија су јако слабе апсорпционе линије звезданог порекла, као и да сви квазари према Сејферт класификацији би били сврстани у тип 1, тј. приказују само широке линије.

На слици 1.3 дати су спектри основних типова АГЈ. Ови спектри показују очигледне разлике у континууму, као и ширини и облику линија.

1.2.2 Структура и унификациони модел АГЈ

1.2.2.1 Стандардни унификациони модел

Идеја уједињења различитих врста АГЈ појавила се када се схватило да пројекцијски ефекти морају имати важну улогу у разумевању ових објеката, односно оријентација АГЈ у односу на посматрача. Много труда уложено је у одређивању у којој су мери различите врсте АГЈ заправо иста врста објекта посматрана из различитих углова.

Први убедљив доказ да су Сејферт 1 и Сејферт 2 галаксије заправо исти објекти презентовани су од стане Антонућија и Милера 1985. године (Antonucci & Miller 1985). Они су у поларизованом спектру Сејферт 2 галаксије NGC 1068 приметили да расејана широка емисиона линија има једнаку ширину као широке емисионе линије у спектрима Сејферт 1 галаксија. Овај резултат довео је до теорије која је постала стандардни модел унификације Сејферт 1 и Сејферт 2 галаксија (Antonucci 1993; Urry & Padovani 1995).

Према стандардном моделу у центру АГЈ налази се супермасивна црна рупа (маса $\sim 10^6 - 10^{10} M_{\odot}$). Око супермасивне црне рупе налази се акрециони диск материје (Jovanović 2012). Око акреционог диска распоређени су региони гаса који емитују широке линије ширине 1000 – 10000 km s⁻¹ (Gaskell 2009). Тај регион називамо широколинијски регион (енг. Broad Line Region – BLR). Акрециони диск и широколинијски регион су обавијени непровидним торусом прашине (Elitzur 2006). На мало већим удаљеностима од центра налази се усколинијски регион (енг. Narrow Line Region – NLR). С обзиром на то да удаљени облаци гаса који чине овај регион крећу се мањим брзинама у односу на широколинијски регион (типичне брзине $100 - 1000 \text{ km s}^{-1}$). Усколинијски регион је лоциран изнад торуса, тако да га торус не може у поптуности заклонити (Bennert et al. 2002). Код радио јаких извора поред наведених региона могуће је и постојање једног или два млаза релативистичких честица. На слици 1.4 дат је шематски приказ унификационг модела АГЈ. Осовна идеја овог модела јесте да у зависности од угла посматрања у ондосну на централну осу која пролази кроз црну рупу, ми видимо различите типове АГЈ. На пример, АГЈ је класификован као Сејферт 1 (односно тип 1) уколико посматрамо под мањим углом у односу на главну осу. При оваквој оријентацији можемо да видимо и ширколинијски и усколинијски регион, односно детектујемо и широке и уске линије у спектру. Ако би смо посматрали под већим углом, због непровидног торуса не би видели широколиниски регион и објекат би класификовали као Сејферт 2 галаксију (АГЈ тип 2).

1.2.2.2 Структура АГЈ

Стаднардног унификациони модел даје структуру АГЈ. Слика 1.4 приказује основни предложени модел АГЈ. Овакав поједностављени модел није свеобухватан, али је довољан да видимо правац у којем астрофизичари раде да схвате феномен АГЈ. Може се видети да је централни мотор ових објеката супермасивна црна рупа заједно са акреционим диском, обавијена облаком прашине и гаса торусног облика. Између, налазе се облаци гаса који формирају широколинијски регион. Изнад ових региона налазе се облаци који чине усколинијски регион. У овом делу ћемо детаљно описати све делове АГЈ.

Црне рупе су објекти чија гравитациона сила је толико интензивна, да им ништа, па чак ни светлост, не може побећи када се нађе унутар одређеног региона – хоризонта догађаја. Како гас и прашина (па чак и целе звезде) падају у црну рупу, тако се материја убрзава и загрева до веома високих температура (за недавни прегледни чланак погледати Barack et al. 2019). Ово заузврат резултира емисијом рендгенског зрачења. Комбинација мале величине и веома снажног гравитационог поља чини га идеалним кандидатом за мотор који покреће АГЈ. Постоје врло снажни аргументи да се у центру наше галаксије налази црна рупа масе $(4.154 \pm 0.014) \times 10^6 M_{\odot}$ (Genzel et al. 2010; Gravity Collaboration et al. 2019). С обзиром на снагу АГЈ, њихове црне рупе морају бити јако масивне (супермасивне црне рупе). Удаљеност хоризонта догађаја од црне рупе дефинисана је Шварцшилдовим радијусом. У случају неротирајуће црне рупе Шварцшилдов радиујус (Schwarzschild 1916) се дефинише као:

$$R_{\rm Sch} = \frac{2GM_{\rm BH}}{c^2},$$

где је *G* гравитациона константа, *M*_{BH} маса црне рупе, а *с* брзина светлости. Овде видимо да је оваква црна рупа описана само једним параметром, њеном масом. У случају ротирајуће црне рупе, поред њене масе, потребан нам је још параметар који описује њену ротиацију – спин (Kerr 1963). Он се дефинише као:

$$a = \frac{cJ}{GM_{\rm BH}^2}$$

где је *J* момент импулса. Радијус хоризонта догађаја код оваквих црних рупа дат је изразом:

$$r_{\rm H} = r_{\rm g}(1 + \sqrt{1-a}),$$

где је $r_{\rm g} = R_{\rm Sch}/2$ гравитациони радијус. Граничне вредности за радијус хоризонта догађаја код ротирајућих црних рупа су $r_{\rm h} = 2r_{\rm g}$ за a = 0, и $r_{\rm h} = r_{\rm g}$ за максимално ротирајућу црну рупу (a = 1).

Акрециони диск. Гас који пада ка црној рупи поседује момент импулса који због закона одржања му не дозвољава да једноставно упадне у њу. Уместо тога, гас формира структуру, која изгледа као диск, чија је орентација дефинисана моментом импулса гаса. Ова поприлично једноставна физика је разлог велике распрострањености дискова у астрофизичким објектима. С обзиром на закон одржања момента импулса, неопходно је да постоји неки облик трења којим материја из акреционог диска губи момент импулса и пада у црну рупу. Извор тог трења вероватно долази од магнетиних сила које се јављају у јонизованој плазми. На тај начин момент импулса се ефикасно преноси ван акреционог диска и омогућава се наставак акреције. Поред преноса момента импулса, магнетна напрезања ће дио гравитационе потенцијалне енергије нагомиланог гаса да претворе у топлоту. Процеси у којима се то дешава су врло сложени, и још увек их до краја не разумемо, али количина ослобођене енргије није осетљива на сам механизам процеса, тако да је можемо врло поуздано одредити. Динамика акреционог диска зависи од тога да ли се та настала енергија израчи. Акреционе дискове можемо поделити на две главне класе на основу ефикасности зрачења $\epsilon \equiv L/\dot{M}c^2$, где L представља луминозност насталу акрецијом, \dot{M} стопу акреције масе, и с брзину светлости:

- Ако се енергија израчи на временској скали краћој од времена које је потребно гасу да падне у црну рупу, гас се брзо хлади и таложи се у танком акреционом диску. Вертикална дебљина диска представља 0.1-3 % хоризонталног радијуса. Типична ефикасност ε је у опсегу 0.06 до 0.4 и зависи од спина црне рупе.
- Ако гас не може да израчи ослобођену енергију, онда креира врели дебели акрециони диск чија је ефикасност ε ≪ 1. Вертикална дебљина је онда 20 % или више хоризонталног радијуса.

За АГЈ је опште прихваћен стандардни Њутнов модел акреције који су развили Шакура и Сунајев 1973. године (Shakura & Sunyaev 1973). Овај модел је превасходно развијен да објасни акреционе дискове око звезданих црних рупа које се налазе у двојним звезданим системима, али уз одређене модификације овај модел може се применити и на дискове око супермасивних црних рупа у АГЈ. У стандардном моделу, акреција се одвија у оптички непрозрачном и геометријски танком акреционом диску. Ефективна оптичка дебљина у дисковима је веома велика и фотони су у термалном еквилибријуму са електронима (Ророvić et al. 2006). Више информацја о акрецији на супер масивну црну рупу се може наћи у прегледном чланку аутора Јовановић и Поповић из 2009. године (Jovanović & Popović 2009).

Млазеви. Већ смо споменули да неки од АГЈ показују усмерене млазеве релативистичких честица. Њихов настанак и састав на малим скалама још увек није до краја истражен јер посматрања не могу да разлуче између неколико постојећих теоријских модела. Један од предложених механизама захтева да на удаљеностима веома близу црне рупе долази до задебљања акреционог диска и формирања пара супротних млазева избацивања гаса који су поравнати са осом ротације диска. Унутар ових млазева јак притисак зрачења изазива убрзање и избацивање материје дуж осе ротиације диска. Нажалост, овај модел не може да произведе довољно енергије код избачених честица које одговарају ономе што видимо. Други модели, посебно они у којима магнетно поље диска има главну улогу у формирању млазева се још истражују, али до данас немамо поптуну теорију која одговара посматрањима (Lobanov 2007).

Широколинијски регион. Широке емисионе линије представљају значајну карактеристику сјајних АГЈ. Ове емисионе линије су проширне услед кретања гаса (брзине ~ 10^4 km s⁻¹) и сматра се да настају из гаса у близини централне супермасивне црне рупе и њеног акреционог диска. Гас који сачињава широколинијски регион бива осветљен огромном количином зрачења које долази из акреционог диска. Флуксеви емисионих линија, а посебно њихови односи, у великој мери зависе од локалних физичких услова, концентрације и температуре гаса. Претпоставке су да су физички услови у овој области сличнији звезданим атмосферама него класичној међузвезданој материји, будући да су температуре реда 10^4 K док су густине значајно веће него у међузвезданој средини, у опсегу 10^9 - 10^{13} cm⁻³ (Піć et al. 2012; Panda 2021). У поглављу 2 дат је детаљан опис широколинијског региона.

Усколинијски регион. Усколинијски регион налази се на много већој удаљености од центра АГЈ него широколинијски регион. Овај регион окупира простор од 0.1 до 100 парсека од супермасивне црне рупе. Гас у усколинијском региону се јонизује зрачењем из централног извора процесима фотојонизације и ударним таласима који се могу јавити са млазом материје. Емисионе линије у усколинијском региону могу бити дозвољене, полузабрањене и забрањене, а њихово стварање је углавном из сударних процеса. С обзиром на то да су судари доминантан процес при стварању линија у овом региону, тако из односа линија можемо лако да одредимо температуру и концентрацију усколинијског региона (Osterbrock & Ferland 2006). Процењена концентрација електрона се креће у распону од 10 до 10³ ст⁻³, а температура у опсегу од 10000 до 25000 К. Механизам ширења линија је доплеров, и њихове ширине су опсегу од 200 до 500 km s⁻¹. Код неких објеката уске линије имају још једну ширу компоненту, углавном померену ка плавом делу спектра, чија ширина на половини максималне висине (FWHM) може да буде до ~ 1500 km s⁻¹(Kovačević-Dojčinović et al. 2022).

"**Торус" прашине.** Уколико би АГЈ био сачињен само од централног дела, посматрач би могао једино да види рендгенско и ултраљубичасто зрачење које долази од врелог акреционог диска, и осим млазева релативистичких честица, не много више од тога. Да

Слика 1.5: На слици је представљен распоред квазара на главном низу. Оновна подела на популацију A (FWHM(H β) < 4000 km s⁻¹, популацију Б (FWHM(H β) > 4000 km s⁻¹) и естремну A (где је $R_{\text{FeII}} > 1$) је назначена на графику. Слике је преузета из Marziani et al. (2018).

би објаснили снажно инфрацрвено зрачење, модел укљућује и торус гаса и прашине који окружује централни регион. Честице прашине, за које се претпоставља да су зрна графита, бивају загријавана зрачењем из централног региона, док се и саме не загреју да почну да зраче енергију истом брзином којом је примају. С обзиром да би прашина сублимирала на температурама већим од 2000 K, тако у торусу очекујемо мање температуре. Овакви облаци прашине би претварали уљтраљубичасто и рендгенско зрачење које долази од акреционог диска у инфрацрвено зрачење тако да би најмање таласне дужине долазиле из најтоплијих или унутрашњих делова облака (Stalevski et al. 2012).

Из овог једноставног модела, лако је разумети зашто АГЈ често емитује већину зрачења у инфрацрвеном делу спектра. Готово сигурно, прашина загревана од стране акреционог диска примећује се у већини АГЈ, иако прашина може бити неправилније распоређена него у нашем једноставном моделу, такође торус може имати и празнине у себи. Ипак, нека мала количина инфрацрвеног зрачења долази и из централних региона.

1.2.3 Главни низ квазара

Главни низ квазара је метода систематизације различитих спектралних особина квазара. Идеја систематизације је настала из анализе главних компоненти (енг. *Principal Component Analysis*) измерених параметара оптичког спектра ~80 PG квазара (Boroson & Green 1992). Први својствени вектор (енг. *eigenvector* - E1) испоставило се да је углавном повезан са двије негативне корелације: јачине FeII λ 4570 и интензитета [OIII] $\lambda\lambda$ 4959, 5007 линија и јачине FeII λ 4570 и FWHM H β линије.

Главни низ се ефективно представља на графикону FWHM Н β наспрам параметра $R_{\rm Fe\,II}$, којег дефинишемо као однос флукса Fe II λ 4570 и широке компоненте Н β линије. На слици 1.5 приказан је распоред квазара на главном низу. Простор који обухватају квазари на овој параметарској равни доводи нас до поделе на две главне класе: популација A и популација Б (Sulentic et al. 2000а). Популацију A чине квазари са FWHM Н β линије мањом од 4000 km s⁻¹, док популацију Б чине квазари са FWHM већом од задате границе. Разлике у спектрима ове две класе су приметне чак и једноставним погледом на спектар. Популација A имају оштар профил Н β линије, снажну емисију Fe II и слабе [O III] $\lambda\lambda$ 4959,5007 линије, док типични спектри популације Б гаусовске профиле Н β линије, слабу емисију Fe II и снажне линије [O III] $\lambda\lambda$ 4959,5007. Поред ове две популације постоји и екстремна A популација (Marziani & Sulentic 2014), коју карактерише врло јака емисија FeII и чине је објекти са $R_{\rm Fe II} > 1$. Облик распореда квазара на главном низу највероватније је последица едингтоновог односа ($L/L_{\rm Edd}$) и угла под којим посматрамо АГЈ (Marziani et al. 2001).

1.3 Емисија у континууму код АГЈ

 $A\Gamma J$ континуум је генерално добро описан једноставним степеним законом (види релацију 1.1), где спектрални индекс α варира у зависности од опсега таласних дужина. Сматра се да је такав континуум продукт како термалних процеса (на пример, зрачење акреционог диска у оптичком и ултраљубичастом делу спектра, зрачење прашине у инфрацрвеном делу спектра), тако и нетермалних процеса, у којима распоедела честица није Максвеловска, а укључени су и високо-енергетски фотони и релативистички електрони. Укупна емисија узрокована је од више физичких процеса. Овде кратко дефинишемо основне механизме континуалног зрачења код $A\Gamma J$ (видети нпр. Netzer 2013, за детаљан приказ свих механизама зрачења).

Зрачење апосолутно црног тела. Апсолутно црно тело је савршен апсорбер зрачења на свим фреквеницијама. Налази се у термодинамичкој равнотежи са околином, и атоме који га сачињавају описујемо Максвеловом расподелом брзина. Емисија апослутно црног тела има добро дефинисану спектралну енергецку расподелу, са максимумом који је директно везан за апсолутну температуру:

$$B_{\nu}(T) = \frac{2h\nu^3}{c^2(e^{h\nu/kT} - 1)},\tag{1.2}$$

где је $B_{\nu}(T)$ енергија израчена у јединици времена, h Планкова константа, ν фреквенција електромагнетног зрачења, c брзина светлости у вакууму и k Болцманова константа. Ово зрачење углавном долази из акреционог диска и достиже максимум у ултраљубичастом делу спектра (слика 1.6), али је такође одговорно и за зрачење прашине у инфрацрвеном делу спектра.

Синхронтронско зрачење. је високо поларизовано, нетермално зрчење, настало услед спиралног кретања релативистичких електрона у магнетном пољу. Ово зрачење доминира у радио јаким АГЈ, и долази махом из млазева релативистичких честица. Интензитет зрачења зависи од фреквенције ν по следећој релацији:

$$I(\nu) \propto \nu^{\frac{1-p}{2}},\tag{1.3}$$

Слика 1.6: Схематски приказ спектралне енергетске расподеле зрачења АГЈ, пре свега базирање на емисији квазара без присутног релативистичког млаза. Црна пуна линија представља укупну посматрану емисију, док су различитим линијама у боји (померене надоле ради јаснијег приказа) представљајне појединачне компоненте континуалног зрацхења: термална емисија акреционог диска, емисија вреле короне око диска, рефлексија зрачења из короне, додатно зрачење у Х-домену, термално зрачење "торуса" прашине (за детаље видети нпр. Ророvić & Ilić 2017, као и наведене референце). Примарна емисија из АГЈ акреционог диска достиже максимум у ултраљубичастом делу спектра. Додатно је приказана и спектрална енргетска расподела два блазара, Mrk 421 са јаком синхротронском емисијом (енг. *high synchrotron peaked* - HSP) и блазар 3С 454.3 са слабим синхротронским зрачењем (енг. *low synchrotron peaked* - LSP). Слика је преузета из рада Раdovani et al. (2017), а заправо представља адаптацију слике из Наrrison (2014).

Слика 1.7: Композитни спектар квазара, креиран као медијан комбинованих 2204 квазара из SDSS базе података. Слика је преузета из рада Vanden Berk et al. (2001).

где је p спектрални индекс.

Комптоново расејање. У овом процесу високо-енергетски фотони предају енергију нискоенергетским електронима приликом расејања.Овај процес важан је регионима где се електрони налазе у високоенергецком пољу фотона (у окружењу централних региона АГЈ). Комптоново расејање производи део укупног рендгенског зрачења, и настаје у корони која окружује акрециони диск (слика 1.6).

Инверзно Комптоново расејање. Овај механизам настаје када вискоенергецки електрон интерагују са фотоном и отпушта део сопствене енергије. Код АГЈ јавља се пре свега у млазевима релативистичких честица, и одговорно је за емисију зрачења највиших енергија Ророvić & Ilić (2017).

На слици 1.6 дат је приказ спектралне енергетске расподеле зрачења АГЈ, пре свега базирана на емисији квазара без присутног релативистичког млаза. Црна пуна линија представља укупну посматрану емисију, док су различитим линијама у боји представљене појединачне компоненте континуалног зрачења: термална емисија акреционог диска, емисија вреле короне око диска, рефлексија зрачења из короне, додатно зрачење у X-домену, термално зрачење "торуса" прашине (за детаље видети нпр. Ророvić & Ilić 2017, као и наведене референце).

У оптичком домену и ултраљубичастом домену доминира зрачење црног тела из акреционог диска, које може да се прикаже обичним степеним законом (види релацију 1.1). Међутим, нагиб степеног закона се мења дуж елктромагнетног спектра, што је и видљиво на слици 1.6. Посебно у оптичком домену се доприноси различитих компоненти, акреционог диска и околне прашине могу преклапати, што резултира тиме да се нагиб не може прецизно описати степеним законом са константним нагибом. Vanden Berk et al. (2001) су користећи 2204 спектра квазара из SDSS базе креирали композитини спектар квазара (слика 1.7). На овом композитном спектру јасно се види да се степени закон који описује континуум "ломи" на 5000 Å, и значајно мења вредност од 0.46 у плавом, у односу на 1.58 вредност у црвенијем делу спектра (слика 1.7). Ово нам говори да је у већини случајева континуум описан разломљеним степеним законом (енг. *broken power law*). Поред тога, истичемо да је одређивање оптичког континуума посебно захтевно, јер готово да не постоје спектралне области које нису "контаминаране" емисионим линијама.

1.4 Промењивост АГЈ

Једна од општих карактеристика многих класа АГЈ, као што су квазари, блазари и Сејферт галаксије јесте да им се сјај често мења. Обично се претпоставља да су већина, ако не и сви, АГЈ променљиви на неком нивоу. На пример, практично сви АГЈ у "Хабловом дубоком пољу" показују промењивост која се може детектовати у периоду од две године (Sarajedini et al. 2000). Осим тога, посебни типови АГЈ, као што су блазари, Bl Lac⁷ и OVV објекти (енг. *Optically Violent Variables*) представљају најпромењивије објекте познате у Свемиру. Њихова промењивост је без приметне структуре и поприлично је неправилна.

АГЈ су промењиве у целом опсегу електромагнетног спектра, од гама до радио домена, и показују већу стопу промењивости на мањим талсним дужинама. Варијације су апериодичне и самим тим непредвидљиве, односно стохастичне (Kelly et al. 2009). Могу се описати користећи спектар густине снаге (енг. *Power density spectrum* - PSD), што представља прозивод Фуријеове трансформације светлосне криве и њеног комплексног коњугата. Обично је параметризована као степени закон:

$$P(f) = f^{-\alpha},\tag{1.4}$$

где је f временска фреквенција. Индекс обично узима вредности $1 < \alpha < 2.5$, што значи да су амплитуде варијације веће током дужег временског интервала (Peterson 2008). Тотална снага варијација дата је као интеграл спектра густине снаге по свим фреквенцијама. Основни разлог вариација није познат, али вероватно се може приписати нестабилностима у акреционом диска које на тај начин мењају стопу акреције (De Cicco et al. 2022), мада последњих деценија истраживања показују да то можда и није случај. Стога су узастопна снимања и праћења АГЈ од великог значаја за решавање овог проблема.

Широке линије у АГЈ спектру могу да варирају и у флуксу, као и у профилу. У периоду од неколико месеци промене могу да буду драматичне, али на краћим временским интервалима те промене су суптилне. Прву детекција променљивости емисионих линија дали су Andrillat & Souffrin (1968) и то у спектрима Сејферт 1 галаксије NGC 3516. Ово је показано и неколико накнадних радова, као што су Tohline & Osterbrock (1976) и Phillips (1978), међутим у то време промењивост је сматрана као занимљивост и није прузроковала много интереса у астрономској заједници. Основни проблем је да су са технологијом истражвања спектара АГЈ само велике промене могле бити детектоване. Раних 1980-их година уочена је и изражена промењивост профила широких линија (Ulrich et al. 1997).

Један врло занимљив и релативно ново дефинисан типа АГЈ представља АГЈ екстремне промењивости, које мењају изглед, односно тип, из АГЈ типа 1 у 2 и обрнуто (енг. changing-look AGNs – CL AGN). Ови објекти показују екстремне промене у интензитету емисионих линија, са повременим готово потпуним нестанком и поновним појављивањем широких компоненти (Lyutyi 1972; Graham et al. 2020; Kollatschny & Fricke 1985). И даље је отворено питање, који физички процеси су одговорни за овакву екстремну промењивост

⁷ BL lac јако промењиви објекти названи по првом оваквом отркивеном обејкту BL Lacartea.

која изазива промени типа АГЈ. Постоји неколико физичких процеса који могу изазвати тако драматичне промене. Главни од њих су промене структуре акреционог диска, заклањање широколинијске области од стране непрозрачних облака гаса и прашине, транзитни догађаји (енг. *tidal disruption events*), експлозије супернових, плимско огољавање звезданих омотача, или комбинација свега горе наведеног (видети дискусију у Ilić et al. 2020 и референце у раду). Проучавање ових објеката нам могу помоћу у разумевању структуре АГЈ, као и пореклу активности код ових објеката и емисији широких емисионих линија.

1.5 Доступни кодови за моделовање АГЈ

Данас се оптичка спектроскопија враћа у фокус, са неколико великих телескопа са савременим више-објектним спектрографима. Неки од њих су већ почели или ће почети са радом, као шо су Dark Energy Spectroscopic Instrument – DESI (Dark Energy Survey Collaboration et al. 2016), Large Sky Area Multi-Object Fibre Spectroscopic Telescope – LA-MOST (Zhao et al. 2012), 4-metre Multi-Object Spectroscopic Telescope – 4MOST (de Jong et al. 2012), Sloan Digital Sky Survey Telescope – SDSS-V (Kollmeier et al. 2017), итд. Ови пројекти ће изградити велику базу оптичких спектара различитих објеката укључујући и AГЈ и квазаре. На пример, SDSS Data Release 16 садржи више од пола милиона квазара (Lyke et al. 2020), док ће DESI прикупити преко 2 милиона спектара квазара. Узимајући све ово у обзир, постоји велика потреба за аутоматизоване софтвере за обраду компликованих AГJ спектара. Тренутно постоји неколико јавно доступних кодова за моделовање AГJ спектара. Најистакнутији међу њима су: QSFit (Calderone et al. 2017) и PyQSOFit (Guo et al. 2018).

- QSFit⁸, базиран на IDL програмском језику, аутоматски врши спектралну анализу АГЈ у оптичком и ултраљубичастом домену. Представља бесплатан софтвер под GPL лиценцом и доступан је на Github. Код моделира оптички спектар једног извора и процењује: луминозност континуума на више таласних дужина, луминозност Балмеровог континуума, луминозност, ширине и померај 20 емисионих линија (H α , H β , MgII, [OIII] итд.); луминизност линија гвожђа у оптичком и ултаљубичастом делу, процену доприноса галаксије домаћина. QSFit моделује континуум као једноставни степени закон. Балмеров континуум заносван је на радовима Grandi (1982); Dietrich et al. (2002a). За процену дорпиноса галаскије домћина искориштена је симулирана 5 Gyr стара елиптична галаксија. Calderone et al. (2017) су изабрали елиптичну галаксију јер су се превасходно бавили јако луминозним објектима. За моделовање емисије говжђа овде је искориштен, у оптичком делу (3500-7000 A), темплејт из Véron-Cetty et al. (2004), а у ултраљубичастом (1250–3090 A) емпиријски темплејт из Vestergaard & Wilkes (2001). Емисионе линије су углавном моделоване једним гаусијаном, осим у случају Н β и Н α линија, које поред широких имају и уску компоненту, а у случају Н α где додатно имају и веома широку компоненту (FWHM између 10000 и 30000 km s⁻¹) коју називају база линије. QSFit је у основној поставци направљен за истраживање великог броја објеката, где није потребна висока прецизност. С обзиром да је писан у IDL време обраде једног спектра је попрично велике брзине. Код је модуларан, тј. могуће је прилагођавати моделе сопственим потребама или објектима. Међутим код није у потпуности бесплатан, јер за IDL је потребно поседовати лиценцу. С обзиром да се већина софтверских пакета, данас развија на програмском језику Pyhton, који је отвореног кода и тако доступан свима, QSFit је тешко користити ван његовог оквира.

- PyQSOFit је код писан у програмском језику Python намењен искључиво анализи SDSS AГН спектара. Код је отвореног типа и доступан је јавно на Github платформи.

⁸https://ross2.oas.inaf.it/qsfit/

Излазне информације су луминозност континуума, параметри линија итд. За процену доприноса галаксије домаћина користи се метода анализе главних компоненти (енг. *Principal Component Analysis* – PCA, више речи о овој методи биће дато у поглављу 4.1). РуQSOFit фитује одвојено све компоненте. Прво се отклања континуум моделом који обухвата: степени закон са додатком полинома трећег степена. Темплејт гвожђа у ултраљубичастом и оптичком делу спектра преузет је из Boroson & Green (1992); Vestergaard & Wilkes (2001); Tsuzuki et al. (2006); Salviander et al. (2007). Након отклањања континуума и емисије гвожђа фитују се емисионе линије једна по једна. РуQSOFit је флексибилан, тако је могуће мењати моделе емисионих линија, но сам начин није најбоље решен јер се сви параметри линија додају у велики низ и захтева много времена за припрему. Сам алгоритам је спор, што јесте последица тога што је писан у програмском језику Руthon. Промена модела континуума и темплејта гвожђа захтева програмерске вештине.

Овде смо дали кратак преглед два кода за моделовања АГЈ оптичких спектара. Оба се већ много користе у литератури, али има још много простора за развој нових и бољих решења. Један од важних елемената који програм за моделовање оптичких спектара мора да садржи је аутоматизовано и истовремено фитовање свих емисионих компоненти (континуум, широких и уских линије). Такође, једноставно и флексибилно додавање нових елемената, као и унапред дефинисани емисиони модели, значајно олакшавају коришћење, поготово истраживачима без великог искуства са комплексним оптичким спектрима АГЈ. То нам је све послужило као мотивација за развој новог, једноставног и флексибилног програмског пакета који ће бити детаљно описан и демонстриран у поглављу 4.1.

Поглавље 2

Особине широколинијског региона

2.1 Фотојонизација и емисионе линије

Емисија настаје у процесу када атом (јон) који се налази у вишем енергетском стању пређе у ниже енергетско стање при томе ослобађајући фотон. Фреквенција испуштеног фотона је везана за енерију прелаза. С обизиром на закон одржања енергије, разлика енергија ова два стања атома одговара енергији ослобођеног фотона. У спектрима АГЈ, налазимо линије настале рекомбинацијом (дозвољне линије) и сударно ексцитоване линије (забрањене линије).

Да би разумели шта се дешава у емисионим регионима, потребно је да уведемо одређене претпоставке. Једна од њих је да се гас у тим регионима налази у локалној термодинамичкој равнотежи. Потпуна термодинамичка равнотежа значи да је температура једнака за све честице у читавом систему. За разлику од потпуне која претпоставља да је температура свих конститутеаната иста (температура која улази у Максвелову, Болцманову, Саха и једначину зрачења црног тела), другим речима да иста температура описује електроне, јоне, атоме и фотоне, код локалне термодинамичке равнотеже само фотони имају различиту температуру. Локална термодинамичка равнотежа примењује се на један слој, или део система где ово важи, док се температура може мењати у комплетном систему.

У локалној термодинамичкој равнотежи, енергија емитована у спектралној линији у једници запремине и јединици времена је дата емисионим коефицијентом (Osterbrock & Ferland 2006):

$$j_{mn} = A_{mn} E_{mn} N_m, (2.1)$$

где је A_{mn} вероватноћа прелаза са нивоа m на ниво n (дата у јединицама s⁻¹), E_{mn} енергија емитованог фотона и N_m популација нивоа m (сm⁻³). Популација нивоа дата је Болцмановом релацијом:

$$\frac{N_m}{N_n} = \frac{g_m}{g_n} e^{-(E_m/kT)} \tag{2.2}$$

где су g_m и g_n статистичке тежине одговарајућих нивоа, k – Болцманова константа и T температура.

Широке емисионе линије углавном настају рекомбинацијом. Рекомбинационе линије настају када јонизовани атом захвата слободни електрон, т.ј. електрон се рекомбинује са ексцитованим нивоом атома. Након тога електрон постепено прелази на ниже нивое док не дође до основног нивоа. Овај сет прелаза назива се каскада и производи дозвољене прелазе атома или јона. Овде се више не може подразумевати локална термодинамичка равнотежа. Због тога, сада разматрамо статистичку равнотежу, која подразумева да је популација датог нивоа константна $\frac{dN_j}{dt} = 0$. Интензитет рекомбинационе линије је дат изразом (Osterbrock & Ferland 2006):

$$I_{mn} = \frac{h\nu_{mn}}{4\pi} \alpha_{\rm rec}(n) N_e N_p \tag{2.3}$$

где су N_e и N_p бројне густине електрона и рекомбинационих јона и $\alpha_{\rm rec}(n)$ рекомбинациони коефицијент за ниво n.

Други процес који доводи атом или јон у ексцитовано стање, из којег се деексцитује емитујући зрачење, при чему прозиводи емисону линију, је сударна ексцитација (судар са другом честицом, готово увек електрон). Овај процес доминира у усколинијском региону због малих густина, одакле потичу забрањене линије. Вероватноћа прелаза у којима насатају ове линије је јако мала ($A_{ij} \sim 10^{-2} \text{ s}^{-1}$), за разлику од вероватноће прелаза дозвољених линија ($\sim 10^8 \text{ s}^{-1}$). То значи да атом проведе доста времена у побуђеном стању пре него што пређе у ниже стање емитовањем фотона. Интензитет забрањеног прелаза дат је релацијом:

$$I_{ij} = \frac{h\nu_{ij}}{4\pi} \frac{g_i}{g_j} \frac{A_{ij} X N_e}{\frac{A_{ij}}{N_e Q_{ij}} + 1} e^{-(h_{ij}\nu/kT)},$$
(2.4)

где су g_i и g_j статистичке тежине одговарајућих нивоа, X је константа, Q_{ij} вероватноћа судара, однос A_{ij}/Q_{ij} критична густина N_e .

2.2 Болдвинов ефекат

Истраживање корелација између континуума и емисионих линија код АГЈ представљају важан начин за истраживање структуре и физичких услова у централним регионима АГЈ и широколинијској области. Болдвин је 1977. године (Baldwin 1977), истражујући неколико објеката пронашао негативну корелацију између екивалентне ширине (EW) CIV λ 1549 линије са луминозношћу припадајућег континуума (слика 2.1). Ова особина од стране Карсвела и Смита (Carswell & Smith 1978), названа је Болдвинов ефекат (у даљем тексту користимо понекад и скраћеницу БЕФ). БЕФ је детектован готово у свим ултраљубичастим и оптичким широким емисионим линијама (Dietrich et al. 2002b; Dong et al. 2009; Shemmer & Lieber 2015; Kovačević et al. 2010a; Rakić et al. 2017), уским линијама (Dietrich et al. 2002b; Kovačević et al. 2010a; Jankov & Ilić 2020; Wang et al. 2022), али и у рендгенском домену (Page & et al. 2004; Jiang et al. 2006, 2007; Shu et al. 2012; Ricci et al. 2013).

БЕФ се може описати једноставним степеним законом:

$$EW_{\rm line} \propto L_{\rm cnt}^{\beta},$$
 (2.5)

где је EW_{line} еквивалентна ширина линије, L_{cnt} луминозност одговарајућег континуума (континуум у близини емисионе линије) и индекс β нагиб БЕФ.

Данас познајемо две врсте Болдвиновог ефекта:

- 1. Глобални Болдвинов ефекат негативна корелација између *EW* емисионе линије и луминозности припадајућег континуума великог броја АГЈ, а за сваки објекат користимо једну посматрачку епоху
- 2. Сопствени или унутрашњи Болдвинов ефекат– негативна корелација између *EW* емисионе линије и припадајућег контиуума за више посматрачких епоха једног променљивог АГЈ (Pogge & Peterson 1992).

Слика 2.1: Однос континуума на 1450 Å и еквивалентне ширине С IV линије. Пуни крузхићи представљају равне радио спектре, крстићи стрме радио спектре, троуглови конкавни и радио слаби спектри. Слика је преузета из рада Baldwin (1977).

Истраживање сопственог БЕФ и његова релација са глобалним БЕФ може нам дати одговор на питање како се формирају широке емисионе линије, те самим тим довести нас до бољег разумевања природе широколинијског региона. Из ових разлога, у последње четири деценије уложено је много труда у истраживање БЕФ и неколико различитих интепретација је дато. Упркос, великом труду, физичко објашњење БЕФ је још увек отворено питање (Boroson & Green 1992; Netzer et al. 1992; Zheng et al. 1992; Zheng & Malkan 1993; Green 1996, 1998; Korista et al. 1998; Warner et al. 2003; Bachev et al. 2004; Baskin & Laor 2004; Xu et al. 2008; Popović & Kovačević 2011; Bian et al. 2012; Rakić et al. 2017). Навешћемо неке од могућих интерпретација:

- раст луминозности доводи до пада јонизационог параметра U и фактора покривености широколинијског региона (Mushotzky & Ferland 1984). Фактор покривености, гледано из центра АГЈ, представља део видног поља покривен фотојонизованим облацима гаса; заправо то је део укупног просторног угла који заузима емисиони регион од интереса;
- геометријски ефекат услед комбинације анизотропског контуума, зависног од нагиба диска, са изотропском емисијом у линији (Netzer 1985);
- разлика у променљивости термалне и нетермалне компоненте континуума, које доводе до промене спектралне расподеле енергије (енг. *spectral energy distribution – SED*) јонизованих фотона, који утичу на интензитет широке емисионе линије независно од континуума у близини те линије (Kinney et al. 1990);
- више-компонентна природа широких емисионих линија, са делом флукса линије која није директно контролисана луминозношћу контиунуума (Pogge & Peterson 1992; Shapovalova et al. 2008);

Слика 2.2: Нагиб β БЕФ за емисионе линије означене на слици нацртан у функцији јонизујуче енергије χ_{ion} потребне да се јонизује атом. Преузето из рада Dietrich et al. (2002b).

- пораст луминозности доводи до веће металичности и до слабљења јонизационог континуума (Dietrich et al. 2002b);
- различита Едингтонова луминозност (Calvani et al. 2004; Baskin & Laor 2004; Bachev et al. 2004; Marziani et al. 2008; Dong et al. 2009; Bian et al. 2012) или маса супермасивне црне рупе(Xu et al. 2008);
- додатно нејонизујуће зрачење у континууму (Rakić et al. 2017).

Различите комбинације горе наведених фундаменталних ефеката могу се користити да се објасни како сопствени тако и глобални БЕФ.

2.2.1 Глобални Болдвинов ефекат

Као што је већ поменуто глобални БЕФ представља антикорелацију имзеђу EW емисионе линије и луминозности припадајућег континуума код више АГЈ посматраних у једној епохи. Ране студије су пронашле велико расипање података, а понекад и веома слабу корелацију. Неколико ствари требало је проверити да би се уопште потврдило постојање БЕФ. На пример, квазаре са слабим емисионим линијама је тешко посматрати, што може довести до тога да је заправо глобални БЕФ последица селекционог ефекта (Jones & Jones 1980). Различити типови квазара и АГЈ имају различите физичке особине и узимајући у то у обзир постоји могућност да популациони ефекат не дозвољава да их користимо као космолошке индикаторе. Ако се својства квазара мењају у космичком времену, онда БЕФ мерен на једном црвеном помаку неће бити одговарајући на другом црвеном помаку (Osmer & Shields 1999). Већина ових проблема су решена (Shields 2007; Osmer & Shields 1999) и доказано је да БЕФ постоји.

Многа истраживања су показала да различите линије имају различите нагибе БЕФ и да те варијације нису насумичне (видети слику 2.2). Линије које потичу од атома или јона за чију јонизацију су потребне веће енергије имају стрмији БЕФ нагиб (Espey &

Слика 2.3: Криве сјаја флуксева широких Н α и Н β линија, заједно са флуксом континуума мереним у 5100 Å и 6200 Å у логаритамској скали за узроак од 6 АГЈ (назив објекта и линија/континуум су назначени на сваком од графика). Подаци су подељени на основу стања флукса на високи флукс (троуглови) и ниски флукс (пуни кружићи). Слика је преузета из рада Rakić et al. (2017).

Аndreadis 1999; Dietrich et al. 2002b). Неколико истраживања показало је да Балмерове линије не показују глобални БЕФ (Kovačević et al. 2010a; Popović & Kovačević 2011; Rakić et al. 2017) или чак да показују слаби инверзни глобални БЕФ – позитивна корелација између ЕW линије и одговарајућег континуума (Croom et al. 2002; Greene & Ho 2005). Објашњење разлике у БЕФ код високојонизованих и нискојонизованих линија може бити комбинација геометријског ефекта са јонизационим параметром U који зависи од луминозности (Zamorani et al. 1992). Такође, најсјајнији објекти производе мекши (слабији на вишим енергијама) континуум резултујићи слабијим високојонизованим линијама (Zheng & Malkan 1993). Уопштено, различите масе супермасивних црних рупа и стопе акреције у комбинацији са променама у металичности гаса, могу објаснити глобални БЕФ (Korista 1999; Green et al. 2001; Shang et al. 2003).

Слика 2.4: Сопствени БЕФ код шест АГЈ из дугорочне кампање праћења АГЈ типа 1 (Ilić et al. 2017). Имена свих објеката ознчени су на слици. Подаци су подељени на стања високог флукса (троугли), и ниског флукса (кружићи). Пуна и испрекидана линија представљају најбољи линеарни фит за стања високог и ниског флукса редом. На слици се јасно види да свих шест АГЈ показују снажан БЕФ као и промена нагиба најбољег линеарног фита са временом. Слика је преузета из рада Rakić et al. (2017).

2.2.2 Сопствени Болдвинов ефекат

Сопствени БЕФ представља негативну корелацију између еквивалентне ширине емисионих линија и луминозности континуума у близини емисионе линије за појединачни објекат добијен користећи мерења из више епоха. Сопствени БЕФ има много стрмији нагиб β (види израз 2.5) у односу на глобални БЕФ (Kinney et al. 1990; Pogge & Peterson 1992).

Сопствени БЕФ изучаван је у многим радовима, али само у случају јако променљивих АГЈ. У Kinney et al. (1990) раду показано је постојање сопственог БЕФ у 7 објеката, посматраних IUE сателитом, код CIV и Ly α линија. Касније је потврђен сопствени БЕФ код H β линије код NGC 5548 (Gilbert & Peterson 2003; Rakić et al. 2017). Поправка за временско кашњење линије у односу на континуум смањује расипање података и повећава коефицијент корелације код БЕФ (Gilbert & Peterson 2003).

Једна од најзанимљивијих чињеница код сопственог БЕФ јесте мењање нагиба БЕФ (β) кроз време. Ова особина примећена је код CIV линије у спектру NGC 4151 (Kong et al. 2006) и у спектру Fairall 9(Wamsteker & Colina 1986; Osmer & Shields 1999), као и код Н β линије у спектру NGC 5548 (Goad et al. 2004; Rakić et al. 2017).

Rakić et al. (2017) проучавали су сопствени БЕ Φ код широких Н β и $H\alpha$ линија код шест АГЈ посматраних дуги низ година. Студија је обухватала две типичне Сејферт 1 галаксије (NGC 4151 и NGC 5548), два АГЈ са двоструким пиком (3С390.3 и Arp 102B), једну NLSy1 галаксију (Ark 564) и један високо-луминозни квазар са асиметричним профилима широких линија (Е1821+643). Анализирани подаци су резултат велике кампање дугорочног посматрања познатих AГJ, који су приказани у радовима Shapovalova et al. (2008, 2010, 2012, 2013, 2016), као и допуњени подацима из рада Dietrich et al. (2002а). За детаљне информације о посматрањима и обради прикупљених података, као и мерењима флукс погледати наведене радове. На слици 2.3 приказане су криве сјаја за шест објеката разматраних у раду Rakić et al. (2017). Подаци су раздвајани на основу стања флукса на стање високог флукса (троуглови на слици 2.3) и ниског флукса (пуни кружићи на слици 2.3). На основу ове поделе у Rakić et al. (2017) разматрали су еволуцију БЕФ. Код свих шест објеката примећен је сопствени БЕФ као и промена нагиба БЕФ (слика 2.4), што указује да овај феномен није редак. Могући разлог за промене нагиба БЕ Φ може бити особина широколинијских региона да "дишу (енг. breathing effect), тј. да се са порастом луминозности континуума емисиони регион помера на веће удаљености унутар шроколинијског региона (Rakić et al. 2017). Ова особина је већ примећена код NGC 5548 (Cackett & Horne 2006). Rakić et al. (2017) су успели ово да покажу једноставним фотојонизационим моделом, међутим сам модел није могао да репродукује друге резултате, као што је однос $H\alpha/H\beta$. Rakic et al. (2018) су показали да 5 NLSy1 објеката из Sloan Digital Sky Survey Reverberation Mapping project (SDSS-RM) показују сопствени БЕ Φ . Сопствени БЕ Φ врло вероватно није повезан са геометријом широколинијског региона. Објекти са различитим профилима широких линија, тј. са различитим геометријама широколинијског региона, показују снажан БЕФ (Rakić et al. 2017; Rakic et al. 2018). Ова тврдња захтева тестирање на већем броју различитих класа АГЈ. У раду Rakić et al. (2017) дискутовано је да потенцијални узрок БЕФ може да буде додатно нејонизујуће зрачење у континууму, које долази из широколинијског региона (за детаље видети секцију 2.3.4). Rakić et al. (2017) су показали да глобални и сопствени БЕФ нису повезани (види слику 2.5).

Слика 2.5: Глобални БЕФ код Н β линије. Горе: примери сопственог БЕФ за шест објеката (имена објеката означена су на слици). Тачке различитих АГЈ ограничене су елипсама. Линеарни фит средњих вредности означен је пуном линијом. Доле: Глобални БЕФ за преко 20,000 објеката из SDSS базе, заједно са средњим вредностима шест АГЈ са горње слике. Пуна линија означава линеарни фит кроз све тачке. Слика је преузета из Rakić et al. (2017).

2.3 Геометрија и кинематичке особине широколинијског региона

Према стандарадном моделу унификације широколинијски регион је начињен од великог броја јонизованих облака гаса, који су сферно распоређени око централног извора. Ширина линија која нам долазе из овог региона креће се у опсегу од 1000 km s⁻¹ до 10000 km s⁻¹. Доминантни механизам ширења је Доплеров. Фотојонизација загрева широколинијски регион, док рекомбинација представља основни начин хлађења гаса и формирања емисионих линија (Osterbrock & Ferland 2006; Netzer 2013).

Из услова фотојонизационе равнотеже можемо да проценимо температурни опсег (10000 –20000 К). Све нам ово указује на комплексну физику унутар широколинијског региона. Додатно нам отежава и чињеница да физичке параметре не можемо директно да се одреде из односа линија (за разлику од усколинијског региона). Постоје одређене методе које су ограничене само на специфичне типове АГЈ. На пример, издужена крила Н α линије могу да се користе за мериење T_e (елетронска температура) и τ_e (оптичка дебљина расејања електрона), али само у случајевима кад познајемо узрок расејања електрона (Laor 2006). За мерење температуре и концентрације емисионог региона можемо да користимо и Болцман-плот метод, али уколико су задовољени услови да се све линије креирају у истом региону, а и да је задовољен услов парцијалне термодинамичке равнотеже (Popović 2003, 2006; Ilić et al. 2012).

2.3.1 Профили широких емисионих линија

Комплексна структура и физика широколинијског региона повлачи са собом и компликоване профиле емисионих линија. Додатну отежавајућу околност представља и то да се параметри линија (интензитет и облик) мењају са временом. Поред тога широке емисионе линије могу да се разликују код различитих објеката. Општа претпоставка је да високојонизоване и нискојонизоване линије долазе из различитих делова широколињског региона (Sulentic et al. 2000b). Вискојонизоване долазе из региона ближе извору јонизације, док нискојонизоване долазе из региона са великом линијском густином, т.j. са супротне стране извора (Kovačević et al. 2010а; Kovačević 2011).

Blumenthal & Mathews (1975) су описали профиле широких линија као логаритамске, али због комплексности и асиметрије, широке линије се моделују као комбинација неколико гаусијана. Сваки од гаусијана представља област унутар широколинијског региона са сопственим физичким особинама (Brotherton et al. 1994; Popović et al. 2001). Такође, профили линија зависе и од угла посматрања (Wills & Browne 1986; Sulentic et al. 2000b).

Мали број АГЈ (2–4% на z < 0.35) показује линије са два пика. До сада су посматране само у линијама Балмерове серије и MgII (Eracleous & Halpern 1994; Strateva et al. 2003; Eracleous & Halpern 2003; Shapovalova et al. 2010, 2013). Ротација материје у диску резултује са два пика у емисионим линијама, један померен ка црвеном делу спектра, а други ка плавом. Гравитационо поцрвљењење утиче на укупан померај центра линије и дисторзију самог профила. За објашњење ове појаве, предложен је самоконзистентни геометријски и термодинамички модел који се састоји од оптички дебелог диска и централне уздигнуте структуре ("јонски торус"), која осветљава диск, чиме се решава проблем енергетског буџета, а истовремено објашњава и недостатак јаког великог плавог испупчења (енг. *Big Blue Bump*) што карактерише овакву врсту објеката. Више од неколико деценија праћење промењивости профила линија помогло је да се искључе конкуретни модели емисија линија за већину понзатих АГЈ са два пика (нпр. бинарне црне рупе, биполарно избацивање гаса итд.). Овакве мониторинг кампање пружају јединствену прилику за детаљно проуцхавање геометрије акреције заједно са термодинамичким стањем гаса (Strateva et al. 2003;

Слика 2.6: Приказ кретања гаса у близини супермасивне црне рупе и очекивани профил емисионе линије. Црвеним стрелицама означен је гас који се креће од посматрача, док плавим гас који се креће према помсатрачу. Асиметрија линије настаје услед гравитационог црвеног помака. Слика је преузета из рада Ророvić (2020).

Shapovalova et al. 2013).

Сматра се да слично већ наведеном допринос диска постоји у свим широким линијама, али то није тако очигледно, јер зрачење диска је суперпонирано са зрачењем из других региона (Popović et al. 2004; Bon et al. 2009).

2.3.2 Утицај супермасивне црне рупе на облике спектралних линија

Супермасивна црна рупа окружена је гасом, који се акретује на црну рупу и при томе формира акрециони диск. Диск емитује зрачење од рендгенског до далеког инфрацрвеног дела електромагентног спектра. рендгенско и ултраљубичасто зрачење фотојонизују гас у широколинијском региону. Овај гас иако се налази на већој удаљености од црне рупе и даље је под њеним гравитационим утицајем. Овај регион гаса емитује спектралне линије чија ширина и померај зависе од кретања у гравитационом пољу. За гас чије је кретање углавном условљено гравитацијом супермасивне црне рупе каже се да је вријализован, тј. за тај гас важи теорема вријала где доминира гравитациони члан.

Јонизовани гас има различите брзине у зависности од удаљености од супермасивне црне рупе (видети нпр. рад (Popović 2020), и референце у њему). Гас који је ближи доприноси крилима емисионе линије, док даљи доприноси централном делу емисионе линије (види слику 2.6). Уколико имамо ротационо кретање гаса, око централног извора, гас који се креће према посматрачу доприносиће плавом делу, док гас који се креће од посматаћа црвеном делу емисионе линије. Овакво кретање гаса доводи до ширења линије. Дакле, FWHM емисионе линије пресликава ротационо и насумично кретање облака гаса. Обе ове компоненте кретања су под утицајем гравитационог поља супермасивне црне рупе, тако
да уколико је гас виријализован ширина емитоване линије би требала бити у функцији масе супермасивне црне рупе, тј кретање гаса може бити објашњено теоријом виријала:

$$2T + U = 0 \tag{2.6}$$

где је кинетичка енергија гаса Т дата са:

$$T = \frac{1}{2}M_{\rm g}V^2,$$
 (2.7)

док је U потенцијална енергија гаса U са:

$$U = -\frac{GM_{\rm g}M_{\rm BH}}{fR_BLR} \tag{2.8}$$

Претпоставка да је гас у близини супермасивне црне рупе виријализован, имплицира да се FWHM емисионе линије може користити као мера ротационе брзине тог гаса (v_{gas}) и узимајући у обзир релацију 2.8 добијамо да је та брзина повезана са масом црне рупе на следећи начин:

$$v_{\rm gas} \approx \frac{GM_{\rm BH}}{R},$$
 (2.9)

где је R удаљеност до региона који емитује линију, $M_{\rm BH}$ маса супермасивне црне рупе и G гравитациона константа (видети нпр. Gaskell (2011), као и референце излистане у раду).

На слици 2.6 види се да релација између брзине ротације гаса $v_{\rm gas}$ и FWHM зависи од угла под којим се посматра гас:

$$FWHM \approx v_{obs} = v_{gas} \cos \theta, \qquad (2.10)$$

где је $v_{\rm obs}$ брзина гаса дуж правца ка посматрачу. Комбиновањем две претходне релације 2.9 и 2.10 можемо да добијемо израз за одређивање масе супемрасивне црне рупе. Међутим, ово само важи уколико је гас у потпуности виријализован и ако је $v_{\rm obs} = v_{\rm gas}$. Ова релација се даље компликује уколико узмемо у обзир, да на пример, код широколинијског региона геометрија није једнозначно одређена, тако да у израз за одређивање масе црне рупе додајемо још један бездимензиони виријални фактор f, који поред угла посматрања описује и геометрију емисионог региона, тако да на крају израз за одређивање масе црне рупе поприма следећи облик (нпр. Ророvić 2020 и референце у њему):

$$M_{\rm BH} = f \frac{v_{\rm obs}^2 R_{\rm BLR}}{G}.$$
 (2.11)

Метод одређивања масе црне рупе на основу једначине 2.11 познат је под називом "фотојонизациони" метод или метод одређивања масе из једног спектра (енг. single epoch metod), као и Дибај-метод, по научнику Ернесту Апушевичу Дибају са Кримске опсерваторије, који је овај приступ предложио још 1977. године (Dibai 1977). Из претходне јендачине видимо да поред брзине, за одређивање масе црне рупе потребно је да одредимо и удаљеност до емитујућег гаса, што није нимало једноставан задатак. Једна од метода за одређивање $R_{\rm BLR}$ је метода реверберационог мапирања, о којој ће бити речи у наредном поглављу.

2.3.3 Реверберационо мапирање

Једна од техника проучавања геометрије и кинематике широколинијског региона је реверберационо мапирање. Идеја је први пут предложена још 1972. године (Bahcall et al. 1972), а сам термин "реверберационо мапирање" уведен је у дискусију 1982. године (Blandford & McKee 1982), међутим прве основе за примену овог метода код АГЈ дали су још

Слика 2.7: Шематски приказ АГЈ са означеном основним компонентама. На слици су означени и типови реверберационог мапирања (рендгенско, оптичко и ултраљубичасто, мапирање широколинијског региона и прашине (слика преузета из рада Cackett et al. 2021).

раније Lyutyi & Cherepashchuk (1972). Основни принцип мапирања је мерење врменског кашњења између варијације у флуксу континуума и варијације у флуксу линије. Промене у флуксу континуума, изазивају промену у флуксу линије, тако да очекујемо да су њихове светлосне криве корелисане. Међутим, с обзиром да светлост из репроцесиране емисије мора да прође додатну удаљеност да би дошла до нас, варијација у репроцесираној емисији ће стићи касније од варијација јонизујућег флукса (слика 2.7). Кашњење τ зависи од геометрије система, но просечно кашњење ће бити реда R/c где је R типичан полупречник региона који емитује (Peterson 1993,Cackett et al. 2021).

Главни циљ ове технике је мерење удаљености извора континуума и гаса који емитује широке линије, као и ротациону брзину гаса око супермасивне црне рупе. Са тим параметрима можемо да проценимо масу супермасивне црне рупе, уз претпоставку да је гас у АГЈ виријализован, користећи формулу 2.11.

Реверберационо мапирање се заснива на следећим претпоставкама (видети нпр. Peterson & Horne (2004), као и референце унутар рада):

- Континуум долази из само једног извора чије су дименизије значајно мање од дименизија широколинијског региона $R \ll R_{\rm BLR}$.
- Гас који сачињава широколинијски регион обухвата мали простор.
- Најважнија временска скала у широколинијском региону је време путовања светлости кроз регион.
- Да је веза између варијабилности линија и континуума линеарна.

Рана истраживања показала су да је варијације у широколинијском региону јако брзо рагују на варијације у континууму и да високојонизоване линије као што су CIV и HeII реагују прве, док нискојонизоване линије (нпр. Н β) реагују касније, тј ширколинијски регион је јонски стратификован (Peterson 1993). Поред тога схваћено је да модел широколинијског региона не може да репродукује резултате реверберационог мапирања, него да модел "локалних оптималних емитиујућих облака" (енг. Local Optimally Emitting Clouds - LOC) много више одговара резултатима (Baldwin et al. 1995). LOC за разлику од модела једног облака укључује широк опсег услова у гасу и претпоставља да емисија из широколинијског региона настаје у локацијама где су услови у гасу оптимални. Напредак у квалитету података реверберационог мапирања су омогућила да мапирамо геометрију и кинематику гаса у широколинијском региону. Иако се детаљи истраживања разликују од објекта до објекта (Ilić et al. 2017), постоје и неки заједенички резултати које сумирамо (Cackett et al. 2021):

- широколинијски регион се налази у конфигурацији налик дебелом диску;
- кретање је углавном ротационо са променљивим доприносом прилива материје;
- инклинација (угао између правца ка посматрачу и осе АГЈ) је у распону од 10 40 степени.

Највећи проблем везан за методу реверберационог мапирања представља чињеница да захтева посматрање објеката дужи временски период са оптималном каденцом (бројем посматрања унутар периода праћења). Да би добили добре и поуздане податке AГJ треба пратити више година, па чак и деценија (Kovačević et al. 2015). Тако да ова метода није најбоље решење за одређивање масе супермасивних црних рупа великом броју објеката. Зато је било неопходно наћи формулу за одређивање масе из само једног спектралног посматрања објекта. Таква релација може се извести из једноставног фотојонизационог модела:

$$R \propto L^{\alpha},$$
 (2.12)

где је у идеалном случају $\alpha = 0.5$. Један од најважнијих резултата реверберационог мапирања јесте релација радијуса и луминозности која има облик (Kaspi et al. 2000):

$$\log R_{\rm BLR} = a \cdot \log L_{\rm cont} + b, \tag{2.13}$$

где према Bentz et al. (2009) коефицијенти a и b узимају вредности, за Н β и L_{5100} , $0.519^{+0.063}_{-0.066}$ и $-21.3^{+2.9}_{-2.8}$ респективно. Новија истраживања на великом броју објеката из SDSS базе података показују да су одступања коефицијаната незнатна (Dalla Bontà et al. 2020).

Још један проблем методе реверберационог мапирања је што се виријална претпоставка узима *a priori*. Очекивано је да кретање гаса под снажним утицајем гравитационог поља међутим не могу се искључити и други утицаји као што је истицање гаса (енг. *outflow*) гаса у високојонизованим линијама (Marziani et al. 2019) и нискојонизованим линијама (León-Tavares et al. 2013; Popović et al. 2019). У случајевима снажног одлива, дио емисионих линија долази из региона који нису виријализовани и у таквим случајевима кориштење FWHM широке линије за одређивање масе супермасивне црне рупе нам неће дати добре резултате.

Један од метода за проверу виријалне претпоставке дали су Јопіć et al. (2016); Ророvіć et al. (2019). Zheng & Sulentic (1990) су тврдили да се асиметрија крила Н β линије могу објаснити гравитационим црвеним помаком (видети још: Netzer (1977); Corbin (1995); Kollatschny (2003)). Такође, црвена асиметрија линија је разматрана у контексту гравитационог црвеног помака и за остале линије, као што су ултраљубичасте FeIII линије (Mediavilla et al. 2018) Punsly et al. (2020) су на узорку блазара показали да је снажна црвена асиметрија у ултаљубичастим линијама MgII и CIV последица присуства веома широке линије, померене до 5000 km s⁻¹ ка црвеном делу спектра.

За гас који емитује на удаљености $R_{\rm BLR}$ од супермасивне црне рупе, где је $M_{\rm BH}$ маса црне рупе, гравитациони црвени помак r_G дат је изразом (Bon et al. 2015; Jonić et al. 2016; Liu et al. 2017; Mediavilla et al. 2018; Popović et al. 2019) :

$$z_G = \frac{3}{2} \frac{GM_{\rm BH}}{c^2 R_{\rm BLR}}.$$
 (2.14)

Битно је напоменути да гравитациони црвени помак заправо представља комбинацију гравитационог и трансверзалног (попречног) Доплеровог ефекта (видети на пример: Liu

Слика 2.8: Нормализовани профил широке линије који приказује параметре мјерења: ширине на различитим нивоима максимума – на 50% FWHM, на 25% FWQM и на 10% FW10M. Одговарајуће црвене асиметрије (гравитациони црвени помак) означени су као z50, z25 и z10.

et al. 2022. Попречни Доплеров ефекат, је у потпуности специјални релативистички ефекат и очекује у апроксимацији слабог поља, и пропорционалан је Лоренцовом фактору. Овај ефекат не зависи од оријентације и немогуће га је раздвојити од гравитационог доприноса. Међутим, анализа великог узорка АГЈ спектара показује да је померај широких линија највероватније узрокован кинематиком (Mediavilla et al. 2018)

Ако претпоставимо да у релацијама 2.11 и 2.14 R_{BLR} представља исти фотометријски радијус, онда очекујемо да:

$$z_G \sim FWHM^2$$
. (2.15)

Аисметрију линије, тј. гравитациони црвени помак, можемо да меримо као разлику центроида линије на различитим нивоима интезитета линије (види слику 2.8). На тај начин z50, z25 и z10 меримо на 50%, 25% и 10% максимума интензитета линије, респективно.

У случају виријализованог гаса очекујемо да су логаритми гравитационог црвеног помака и FWHM линеарно повезани. Магčeta-Mandić et al. (2020) су истраживали корелације између FWHM са одговарајућом црвеном асиметријом z50 на узорку од 68 AГJ типа 1 из SDSS базе података и пронашли су да у случају широке Н β линије постоји јака кореклација за разлику од широке Н α линије, где корелације нема. Ово их је довело до закључка да врло вероватно широке Н α и Н β линије вероватно долазе из региона са различитом кинематиком.

Други тест може се извести из Popović et al. (2019), тј. из чињенице да различити региони гаса у широколинијском региону придоносе различитим деловима широке линије.

Слика 2.9: Однос ширне и дисперзије профила линије (FWHM/ σ_{line}) у функцији дисперзије профила линије σ_{line} . Празни и пуни кружићи одговарају подацима из средњег спектра и квадрата средњег одступања спектра респективно. Хоризонтална линија одговара односу за Гаусовски профил, док вертикална апроксимира поделу на популацију A и B из Sulentic et al. (2000a). Слика је преузета из рада Collin et al. (2006).

Користећи релацију 2.11, можемо да пишемо:

$$M_{\rm BH} = f_{\rm line} \frac{\rm FWHM^2 R_{\rm line,1/2}}{G}, \qquad (2.16)$$

$$M_{\rm BH} = f_{\rm line} \frac{\rm FWXM^2 R_{\rm line,X}}{G}, \qquad (2.17)$$

где је $R_{\text{line},1/2}$ удаљеност до гаса са брзинама мереним са FWHM, а $R_{\text{line},X}$ удаљеност до облака гаса са брзинама мереним са пуном ширним на X процената од максимума линије (FWXM). Ако претпоставимо да је у обе ове релације *f* једнако добијамо:

$$\frac{\text{FWXM}^2}{\text{FWHM}^2} = \frac{R_{\text{line},1/2}}{R_{\text{line},\text{X}}}.$$
(2.18)

Комбинујући овај резултат са 2.13, очекујемо да однос пуних ширина на различитим нивоима максимума интезитета линије би требали да су независни од луминозности континуума. Касније у анализи нашег великог узорка објеката АГЈ типа 1, испитиваћемо да ли су примениве релације 2.15 и 2.18. Још једно од важних питања је да ли користити ширину линије FWHM или дисперзију профила линије σ_{line} као меру брзине ротације гаса (Peterson et al. 2004; Collin et al. 2006; Kollatschny & Zetzl 2011), што може имати утицаја и на примену методе одређивања масе црне рупе из спектралних параметара (Dalla Bontà et al. 2020). Дисперзија линије σ_{line} представља други момент профила линије, и она је уопштено више осетљива на крила линија, а мање на средишњи део линије. Да би дефинисали σ_{line} , потребно је прво да уведемо први момент профила линије (Peterson et al. 2004):

$$\lambda_0 = \int \lambda P(\lambda) d\lambda / P(\lambda) d\lambda$$
(2.19)

где је $P(\lambda)$ профил линије. Одатле квадрат дисперзије линије дефинишемо као:

$$\sigma_{\text{line}}^2 = <\lambda^2 > -\lambda_o^2 = \frac{\int \lambda^2 P(\lambda) d\lambda}{\int \lambda P(\lambda) d\lambda} - \lambda_0^2.$$
(2.20)

Однос дисперзије σ_{line} и ширине на половини максимума FWHM зависи од профила линије: гаусов профил FWHM/ $\sigma_{\text{line}}^2 = 2(\ln 2)^{1/2} = 2.35$; за правоугаону функцију FWHM/ $\sigma_{\text{line}} = 2\sqrt{(3)} = 3.46$, троугласта функција FWHM/ $\sigma_{\text{line}} = \sqrt{(6)} = 2.45$; ивицом окренут прстен FWHM/ $\sigma_{\text{line}} = 2\sqrt{(2)} = 2.83$; FWHM/ $\sigma_{\text{line}} \to 0$ за Лорензов профил.

На слици 2.9 дата је промена односа ширне и дисперзије профила линије (FWHM/ σ_{line}) у функцији дисперзије профила линије σ_{line} преузета из рада Collin et al. (2006). Резултати показују да облици линија систематично варирају са порастом ширине линије. Профили ширих линија имају тенденцију равнијег врха, док уже линије имају израженија крила (Collin et al. 2006; Kollatschny & Zetzl 2011). Collin et al. (2006) су раздвојили АГЈ у две популације у зависности од профила линија: FWHM/ $\sigma_{\text{line}} < 2.35$ (популација 1) и FWHM/ $\sigma_{\text{line}} > 2.35$ (популација 2) и пронашли су да ово раздвајање одговара раздвајању на популацију А и полупацију Б предложену од стране Sulentic et al. (2000а), међутим, касније Kollatschny & Zetzl (2011) нису успели да дођу до истог закључка, већ су показали постепени прелазак из популације А у популацију Б, тј. да нема јасне разлике између профила ове две популације.

На крају, понављамо да је одређивање масе супермасивне црне рупе која се налази у центрима многих, ако не и свих галаксија које имају пречкасту компоненту, је важан фактор за разумевање еволуције галаксија и међусобне повезаности супермасвине црне рупе и галаксије домаћина (прегледни рад Kormendy & Ho (2013)). Међутим, мерење масе супермасивне црне рупе је и даље комплексан задатак заснован на издвајању региона гравитационог утицаја супермасивне црне рупе за директне динамичне моделе или на разним релацијама скалирања за индиректно мерење масе (Peterson 2014). Све ове методе су зависне од кинематике региона чији параметри се мере. У случају галаксија које у центру имају АГЈ, које се могу посматрати на великим удаљеностима због њиховог високог сјаја, масе супермасивних црних рупа се могу мерити на коришћењем широких емисионих линија, које налазимо у спектрима АГЈ типа 1 (видети прегледни рад Ророvić 2020). У једној од метода у којој се користе ширине широких емисионих линија претпоставља се да је гас у широколинијском региону виријализован, тј да је кинематика гаса одређена гравитационом интеракцијом са супермасивном црном рупом (Peterson & Wandel 1999; Sulentic et al. 2000a; Netzer 2015). Међутим, постоје индикације да је кинематика широколинијског региона компликованија, услед постојања више компоненти различитих кинематичких особина које емитују линије (Popović et al. 2004) или радијалног кретања насталог услед прилива или истицања гаса (Gaskell 2009; Vietri et al. 2020). Popović et al. (2019) су истраживали кинематику региона који емитују Н β и MgII линије и показали су да су централне компонете ових линија виријализоване и закључили да MgII може у пракси послужити за одређивање масе супермасивне црне рупе, уколико у линији доминира емисија у централном делу. Marziani et al. (2022) су проучавали виријализацију у ултраљубичастим линијама (AlIII λ 1860 дублет и CIII] λ 1909) и показали да слично Н β линији могу да се користе за одређивање масе супермасивне црне рупе. Један од задатака ове тезе је истраживање кинематике региона који емитују широке Н α и Н β линије, пажљиво издвајајући чисте профиле ових широких линија и мерећи њихове ширине и асиметрије. За овај задатак изабрали смо узорак од 946 блиских тип 1 АГЈ из SDSS базе података.

2.3.4 Додатни нејонизујући континуум

На крају овог поглавља, размотримо још и могућност постојања додатне емисије континуума која настаје у широколинијском региону, и нема довољну енергију да јонизује околни гас. Као последица тога се може очекивати одсуство корелације између флукса емисионих линија и флукса оптичког континуума, што је и посматрано код неких АГЈ, нпр. код познате NGC 4151 галаксије (Shapovalova et al. 2008).

Слика 2.10: Геометрија централног региона $A\Gamma J$ предложена у раду Chelouche et al. (2019) као објашњење реверберационог мапирања галаксије Mrk 279. Према овом моделу широколинијски регион се налази на r удаљености од акреционог диска, где се дешава фазни прелаз. Овај прелаз везан је за радијус сублимације прашине у диску. Из ове локације гас је дислоциран на значајну висину h изнад диска и формира геометријску танку и оптички дебелу базу у облику левка. Овако заклоњен гас бива гурнут на веће удаљености пре значајнијег загревања и пре него што се деси сублимација прашине и више допринесе оптичком до рендгенском заклањану даљих компоненти $A\Gamma J$. Према овом моделу база левка доприноси значајнијем зрачењу у оптичком континууму уз слабије Балмерове линије, док се јаке оптичке емисионе линије емитују се из даљих незаклоњених облака (што објашњава веће време кашњења код широких Балмерових линија). Слика је преузета из рада Chelouche et al. (2019).

Резултати реверберационог мапирања оптичког и ултраљубичастог континуума показали су да би величина акрециног диска требало да буде већа за 2 до 3 пута у односу на теоријски предвиђене вредности (Fausnaugh et al. 2016). Такав резултат није у складу са досадашњим знањима о акреционим дисковима у астрофизичким објектима и то је довело до проблема, тзв. "величне акрециног диска". Неколико решења овог проблема обухватају модел комплекснијег диска него што је класичан модел предложен од стране Shakura & Sunyaev (1973), који су описани у радовима: Dexter & Agol (2011); Hall et al. (2018); Mummery & Balbus (2020).

Мерење димензија акреционог диска се такође врши применом методе реверберационог мапирања, односно мерење кашњења сигнала, али користећи комбинације више фотометријских филтера од ултраљубичастог до инфрацрвеног дела спектра (Cackett et al. 2021). Једна од заједничких особина код одређивања временског кашњења континуума јесте, константно веће кашњење у U филтеру (на таласној дужини од 3645 Å) у односу на остатак ултраљубичастог и оптичког зрачења (Edelson et al. 2019). Ово се може објаснити уколико имамо значајан допринос зрачења дифузног континуум из широколинијско региона. Тај дифузни континуум (који потиче из термалних слободно-везаних и слободно-слободних прелаза, као и због расејања) емитује се из истог региона као и широке емисионе линије (Korista & Goad 2001, 2019; Lawther et al. 2018; Netzer 2020) и очекује се да значајно доприноси континууму на свим таласним дужинама.

Chelouche et al. (2019) су применили мултиваријалну анализу временског кашњења на галаксији Mrk 279 и предложили да кашњење долази од фотојонизованог материјала који се налази изнад спољашњег диска. Према моделу из Chelouche et al. (2019) на удаљнести сублимације прашине у диску формира се, од стране гаса дислоцираног изнад акреционог диска, оптички дебео и геометријски танак диск који заклања гас у близини диска. Из тог гаса нам долази значајно зрачење у оптичком делу континуума и слабије Балмерове линије. Из даљих незаклоњених области долазе нам јаке широке емисионе линије, што је у складу са резултатима реверберационог мапирања који налазе велике удаљености области из којих потичу широке Балмерове линије. Приказ модела и детаљније објашњење дато је на слици 2.10.

Rakić et al. (2017) су предложили да узрок сопственог БЕФ може бити управо додатно нејонизујуће зрачење у континууму, које долази из широколинијског региона. Према једноставно фотојонизационом моделу очекивана вредност за нагиб БЕФ (β) би требала да буде ~ 0.5, но Rakić et al. (2017) су у свом узорку нашли вредности за β и до -1. Додатно нејонизујуће зрачење у континууму биће разматрано у наставку тезе, као потенцијално објашњење сопственог БЕФ.

Поглавље 3

Посматрачки подаци

За потребе предложеног истраживања сопственог Болдвиновог ефекта, као и кинематике широколинијског региона на великом броју АГЈ типа 1, неопходно је прикупити велики број јавно доступних спектара високог и униформног квалитета. За то смо искористили тренутно најквалитетнију и свеобухватнију базу спектралних података Sloan Digital Sky Survey Telescope – SDSS.

SDSS представља једно од највећих, најдетаљнијих и најчешће цитираних астрономских истраживања које је икада постојало, чији главни циљ је био да прошири наше разумевање еволуције и структуре универзума на великој скали, формирања звезда и галаксија, историје Млечног пута, природе супермасивних црних рупа, као и науке која стоји иза феномена тамне енергије. Свеобухватним мапирањем преко трећине ноћног неба, SDSS представља предводника савремене физике и подстакао је одговор на низ фундаменталних питања о пореклу универзума.

SDSS користи 2.5-m f/5 модификовани Ричи-Кретјен телескоп са алт-азимут монтажом. Лоциран је у Апаче Поинт опсерваторији у југоисточном Новом Мексику у Сједињеним Америчким Државама. Телескоп поседује два корективна сочива и има видно поље од 3 лучне минуте (технички детаљи телескопа су описани у раду Gunn et al. 2006). SDSS је почео са прикупљањем података 2000. године. У првих пет година (фаза 1 SDSS-I 2000-2005. године) SDSS је "усликао" преко 8000 квадратних степени неба и прикупио спектре преко 700000 објеката. У току фазе 2 SDSS-II (2005-2008. године) завршени су првобитни циљеви пројекта, као што су мапирање половине северне небеске хемисфере и тродимензионо мапирање кластера милион галаксија и 100000 квазара. У току фазе 2 покренута су две нове кампање: Supernova Survey – која је пратила неколико стотина супернових како би мерила ширење свемира и Sloan Extension for Galactic Understanding and Exploration (SEGUE) која је проширила снимање SDSS телескопа ка равни Млечног Пута и мапирала кретање и састав преко 250000 звезда. У току фазе 3 (SDSS-III 2008-2014. године) SDSS спектрографи надограђени су са два нова инструмента како би спровели четири нова истраживања: мапирање груписања галаксија и међугалактичког гаса у далеком свемиру (BOSS), динамику и хемијску еволуцију Млечног пута (SEGUE-2, APOGEE) и мерење популације вансоларних џиновских планета (MARVELS). Последња генрација SDSS (SDSS-IV, 2014-2020. године) проширује прецизна космолошка мерења на рану фазу космичке историје eBOSS, такође проширује и инфрацрвено спектроскопско истраживање наше галаксије на северној и јужној небеској хемисфери АРОGEE-2 и по први пут користи спектрографе за прављење просторно раздвојених мапа појединачних галаксија (MANGA). На послетку, од 2020. године почела је пета фаза пројекта SDSS-V, која представља први пројекат снимања целог спектроскопског неба у више епоха. У ова фаза се састоји од три велика проjeкта: Milky Way Mapper, Local Volume Mapper и Black Hole Mapper. Black Hole Mapper je више-епохално спектроскопско истраживање преко 300000 квазара, са циљем проучавања

физике акреције, раста и еволуције супермасивних црних рупа током космичког времена.

3.1 Подаци из SDSS-RM пројекта

За истраживање сопственог Болдвиновог ефекта потребан нам је већи број АГЈ типа 1 посматраних у више епоха. Други захтев нам је да имамо спектре високог квалитета (нпр., висок однос сигнала наспрам шума), како би прецизно измерили флуксеве широких линија и одговарајућег континуума и да опсег спектара покрива спектралне регионе Н α и Н β линије. За узроак изабрали смо објекте из пројекта SDSS реверберационог мапирања (енг. The Sloan Digital Sky Survey Reverberation Mapping project – у даљем тексту SDSS-RM).

SDSS-RM је пројекат покренут 2014. године (Shen et al. 2015) и део је 4. фазе (SDSS-IV) SDSS пројекта. SDSS-RM је наменски више-објектни експеримент реверберационог мапирања који је спектроскопски пратио узорак од 849 широколинијских квазара у пољу од 7 квадратних степени помоћу специјално дизајнираног спектрографа (енг. SDSS-III Baryon Oscillation Spectroscopic Survey - BOSS). Узорак квазара праћених SDSS-RM пројектом покрива опсег црвеног помака 0.1 < z < 4.5 и ограничен је на флукс $i_{\rm PSF} < 21.7$, што преставља и једино ограничење на својства квазара. У првој етапи спетроскопски подаци снимани су од јануара до јула 2014. године, у просеку један на свака четири дана, укупно 32 епохе за сваки објекат. Програм је настављен у периоду од 2015–2017. године са 12 епоха годишње (2 месечно, објекти су видљиви током 6 мјесеци у години) и у периоду од 2018–2020. године са 6 епоха по години (једна месечно). До данас укупно имамо 78 снимљених епоха за сваки објекат (Shen et al. 2019b), добијених у периоду од 6 година, од 2015 до 2020. године. Покривеност таласних дужина BOSS спектографом је ~ 3650 – 10400 Å са спектралном резолуцијом $R \sim 2000$, што одговара 1.8 – 5.2 Å.

За оригинални почетни узорак од 849 квазара задали смо просте критеријуме, који су примењени на цео узорак објеката наведен у табели у раду Shen et al. (2019b):

- средњи однос сигнала према шуму од S/N > 20, како бисмо добили спектре неопходног квалитета за издвајање поједначних широких емисионих линија из сложеног спектра АГЈ типа 1;
- 2. црвени помак z < 0.5 како би добили опсег таласних дужина који саджи области око Н α и Н β емисионих линија.

Као резултат добијамо узорак од скормних 8 објеката (за сваки доступан сет од 78 епоха), будући да је услов за висок квалитет спектра примењен на све спектре, дакле на посматрања у свим епохама. То је укупно резултирало са укупно преко 600 оптичких спекатара, који су даље детаљно моделирани и анализирани у дисертацији.

У табели 3.1 дати су основни подаци о објектима, преузети из рада Shen et al. (2019b), тачније идентификациони број из SDSS базе, ректасцензија и деклинација објекта, космолошки црвени помак, магнитуда објекта у i опсегу, средњи однос сигнала и шума S/N, логаритам луминозности контиуума на 5100 Å log L_{5100} , логаритам процењене луминозности галаксије у 5100 Å log L_{galaxy} , као и логаритам процењене масе супермасивне црне рупе log $M_{\rm BH}$.

3.2 Подаци из SDSS каталога DR16

С обзиром на потребе великог броја АГЈ са високо квалитентним спектрима (нпр. висок однос сигнала наспрам шума S/N) претражили смо SDSS Data Release 16 -DR16

Табела 3.1: Подаци о изабраном узорку из Shen et al. (2019b). Колоне су: идентификациони број коришћен у SDSS-RM RMID; SDSS идентификација објекта; ректасцензија објекта R.A.; деклинација објекта DEC; космолошки црвени помак z; магнитуда објекта у i опсегу; средњи однос сигнала и шума S/N; логаритам луминозности котниуума на 5100 Å log L_{5100} ; логаритам процењене луминозности галаксије у 5100 Å log L_{galaxy} ; логаритам процењене масе супермасивне црне рупе log $M_{\rm BH}$.

RMID	SDSS ID	R.A.	DEC	z	imag	S/N	$\log L_{5100}$	$\log L_{\rm galaxy}$	$\log M_{\rm BH}$
766	J141419.84+533815.3	213.5827	53.6376	0.165	17.461	41.3	43.7	43.6	7.5
184	J141721.80+534102.6	214.3408	53.6841	0.193	17.857	30.0	43.7	43.4	7.2
775	J140759.07+534759.8	211.9961	53.7999	0.172	17.91	28.6	43.5	43.4	7.9
776	J140812.09+535303.3	212.0504	53.8842	0.116	17.976	25.7	43.1	43.0	7.8
341	J141500.38+520658.6	213.7516	52.1163	0.424	18.562	24.8	44.4		8.2
272	J141625.71+535438.5	214.1071	53.9107	0.263	18.822	23.2	43.9		7.8
101	J141214.20+532546.7	213.0592	53.4296	0.458	18.837	21.3	44.4	43.4	7.9
126	J141408.76+533938.3	213.5365	53.6606	0.192	18.561	20.7	43.3	43.5	7.3

(Ahumada et al. 2020) базу података. DR16 је четврто издање каталога из четврте фазе SDSS прегледа неба (SDSS-IV), које садржи посматрања до августа 2018. године. За детаљан опис циљева ове фазе пројекта, као и опис прикупљених података видети званичан сајт¹ као и рад Ahumada et al. (2020).

За одабир објеката из SDSS базе података, користили смо *Structured Query Language* – SQL програмски језик, задајући претрагу која задовољава следеће критеријуме:

- 1. црвени помак z<0.4 с
а $z_{\rm warning}=0$ да би обезбедили да су у спектрима присутне
и Н β и Н α линија
- 2. однос сигнала и шума S/N у
 gфилтеру да је већи од 30, да би обезбедили високо квалитетан спектар
око Н β линије
- 3. да су објекти класификовани као QSO.

У наставку дајемо приказ примењеног SQL кода:

```
SELECT s.plate, s.mjd, s.fiberID
FROM SpecObj AS s
WHERE s.z BETWEEN 0 AND 0.4
AND s.zwarning = 0
AND s.class='QSO'
AND s.snMedian_g > 30
```

Претрага је резултовала са 960 објеката. Након визуелне инспекције прелиминарног фитовања, из даље анализе избацили смо 14 објеката са лошим резултатима фита, типично збох лоших пиксела у близини емисионих линија од интереса или снажног присуства космичких зрака.

Коначан узорак се састојао од 946 објекта (АГЈ типа 1), који су даље детаљно анализирани и испитивани. Даље у анализи поделили смо укупан узорак на два дела на основу FWHM Н β линије на: популацију A са FWHM(Н β) < 4000 km s⁻¹ (420 објеката или ~44% од укупног узорка) и популацију Б са FWHM(Н β) > 4000 km s⁻¹ (526 објеката или ~56% укупног узорка). Такође, разматрали смо посебну подкласу популације A, екстремна популација A, са снажном емисијом у гвожђу $R_{\text{FeII}} > 1$ (укупно 82 објекта ~8% узорка).

Хистограм расподеле космолошког помака у узорку z (горе) и луминозности континуума на 5100 Å дата је на слици 3.1 за укупан узорак од 946 АГЈ типа 1, где су бојом

¹https://www.sdss.org/dr16/

Слика 3.1: Хистограм космолошког црвеног помака (горе) и луминозности континуума на 5100 Å (доле) приказан у облику слаганих трака популације А (плава боја) и популација Б (зелена боја) за узорак од укупно 946 АГЈ типа 1 преузет из SDSS базе података.

раздвојене популација A (плава) и популација Б (зелена). Важно је истаћи да је узорак униформно распоређен на одабраном нивоу црвеног помака и то за оба подузорка. Већина објеката (95%) се налази у опсегу [42.65–45.11] логаритма луминозности континуума на 5100 Å. Медијан дистрибуције је log $L_{5100} = 44.30$ и дистрибуција је асиметрична према већим луминозностима, као што је и очекивано за узорак AГJ типа 1 из SDSS базе (Liu et al. 2019).

Тестирали смо и колико одабир различитог критеријума за S/N утиче на особине узорка. На пример, одабиром S/N > 20, расподела по црвеном помаку остаје иста и нема важнијег утицаја на расподелу луминозности, док се број објеката повећа приближно 3 пута. С обзиром на то да је главни циљ ове тезе пажљиво издвајање профила широке H α и H β линије, и прецизно одређивање њихових параметара (пре свега ширине и асиметрије), смањивање критеријума за S/N би повећало шум у самим спектрима и на тај начин расипање мерених спектралних параметара би било значајно веће. На крају, финални узорак сачињен је од AГJ са високо квалитеним спектрима у којима можемо прецизно да прочавамо облике линија и меримо њихове параметре, као што су ширина линије, асиметрија и дисперзија профила.

Поглавље 4

Анализа и методе

За истраживање сопственог Болдвиновог ефекта и кинематике широколинијско региона, неопходно је да издвојимо чисте профиле широких Н α и Н β линија, како би смо прецизно измерили потребне спектралне параметре. Долазак до чистих профила широких линија захтева неколико корака. Први је свакако припрема спектара за моделовање. Припрема спектара обухвата: поправку за галактичко поцрвљењење и космолошки црвени помак, као и важан корак одузимање доприноса зрачења звездане компоненте галаксије домаћина. Након припреме, потребно је саставити моделе, те фитовати оптичке спектре. Узимајући ово у обзир за потребе ове тезе развили смо нови програмски пакет FANTASY (енг. Fully Automated pythoN tool for AGN Spectra analYsis¹²) програмски пакет. У овом поглављу детаљно је описан FANTASY програмски пакет, као и спектрални модели коришћени у тези.

4.1 FANTASY програмски пакет

FANTASY је код отвореног типа (енг. *Open Source*) развијен у **python** програмском језику и заснован на **sherpa** пројекту за оптимизовано фитовање (Burke et al. 2022), намењен првенствено за моделовање оптичког опсега $A\Gamma J$ спектра (3600–8000 Å),

али се може применити и у ултраљубичастом делу (2000-3600 Å), као и у блиском инфрацрвеном делу спектра (8000–11000 Å). Код симултано фитује континуум (разломљени степени закон) и сет унапред задатих емисионих линија. У предефисане моделе емисионих линија укључен је и полу-емпиријски FeII модел, развијен од стране астрономске групе у Београду (Popović et al. 2004; Kovačević et al. 2010a; Shapovalova et al. 2012; Popović et al. 2019). Код је флексибилан у избору различитих група линија, било већ унапред дефинисаних листа (нпр. стандардне уске линије, водоникове линије, хелијиум, друге широке линије, забрањене FeII, короналне линије, итд.), али даје и потпуну слободу да креира сопствену прилагођену листу линија. Код се може користити како за фитовање једног, тако и за узорак више спектара. Прилагођен је за коришћење и истраживачима који немају много иску-

Слика 4.1: Лого **FANTASY** програмског пакета.

¹www.github.com/yukawa1/fantasy

²https://fantasy-agn.readthedocs.io/en/latest/

ства у програмирању.

4.1.1 Учитавање података

У FANTASY програмски пакет су унапред имплементиране четри класе за учитавање спектара:

- read_sdss превасходно намењен учитавању спектара у fits формату из SDSS базе података³)
- read_gama_fits намењен за читање спектара у fits формату из GAMA survey⁴ базе података
- read_text за читање ASCII датотека
- make_spec за учитавање било којег формата спектра, односно припрему спектралне класе из три низа података (таласна дужина, флукс, грешка флукса) који пакет може даље да опбрађује.

Класе read_sdss и read_gama_fits засноване су на Astropy (Astropy Collaboration et al. 2013, 2018) пакету, док се за учитавање ASCII формата (read_text) користи numpy пакет (Harris et al. 2020).

4.1.2 Припрема спектара за фитовање

Прије фитовања, FANTASY код пружа неколико могућности за препроцесирање спектара. Поправка спектра за галактичко поцрвљењење врши се функцијом DeReddening на основу познатих координата објеката. Координате се учитавају из fits фајлова или се могу задати командама s.ra и s.dec. Поправка се врши користећи параметризацију описану у Fitzpatrick (1999), уз помоћ PyAstronomy⁵ и sfdmap⁶ пакета за добијање вредности E(B-V) користи мапе из Schlegel et al. (1998) за задате координате.

Функција CorRed поправља таласну дужину, флукс и неодређеност флукса за космички црвени помак према следећим изразима (Peacock 1999):

$$\begin{split} \lambda_{\text{emitted}} &= \frac{\lambda_{\text{observed}}}{1+z} \\ F(\lambda)_{\text{emitted}} &= F(\lambda)_{\text{observed}}(1+z) \\ eF(\lambda)_{\text{emitted}} &= eF(\lambda)_{\text{observed}}(1+z), \end{split}$$

где λ представља таласну дужину, F густину флукса, eF неодређеност поједине тачке густине флукса, индекс emitted представља вредност датих величина у емитованом стању, observed представља посматрану вредност, док је z црвени помак. Уколико црвени помак није задати у fits фајлу, може се задати командом s.z.

Могуће је и ребиновати спектар користећи функцију **rebin**. Ова функција рисемплује посматрани спектар на задату таласну дужину, и при томе чува интегрисани флукс. **rebin** је заснована на SpectRes⁷ python коду (Carnall 2017, 2021).

 $^{^3}$ www.sdss.org

 $^{^4}$ www.gama-survey.org

⁵https://pyastronomy.readthedocs.io

⁶https://github.com/kbarbary/sfdmap

⁷https://spectres.readthedocs.io

За смањивање интервала таласних дужина за даљу обраду спектра FANTASY има уграђену функцију стор, који за параметре узима почетну и крајњу таласну дужину.

FANTASY је оптимизован за рад у таласним дужинама у ваздуху. Уколико је задати спектар дат са таласним дужинама у вакууму, њега је могуће претворити у ваздух са функцијом vac_to_air. Функција је заснована на формулама датим у Ciddor (1996). Важно је напоменути да за спектре из SDSS базе података то се аутоматски ради приликом учитавања спектра.

4.1.3 Отклањање утицаја зрачења галаксије домаћина

За отклањање утицаја зрачења галаксије домаћина у FANTASY имплементирана је метода PCA (енг. *Principal Component Anlysis*). PCA је статистичка метода која омогућава редукцију димензија података, при томе водечи рачуна да се при редукцији сачува што више оригиналних података. Продукти PCA декомпозиције су сопствени вектори (енг. eigen vector), а у случају спектара сопствени спектри (енг. eigen spectra). Yip et al. (2004a) су користећи спектре 170000 галаксија из SDSS базе креирали сет сопствених спектара за галаксије. Yip et al. (2004b) су реконструисањем 16707 квазара из SDSS базе креирали сетове сопствених спектара за различит црвени помак и луминозност. Vanden Berk et al. (2006) су показали да се са линеарном комбинацијом ових сопствених спектара може реконструисати већина $A\Gamma J$, и одузимањем дела који описује емисију галаксије домаћина добити чисти $A\Gamma J$ спектар.

Пратећи процедуру описану у раду (Vanden Berk et al. 2006) у FANTASY су развијене функције rem_hos_sdss и rem_host. Прва користи линеарну комбинацију оптималног сета од 10 АГЈ сопствених спектара и 5 сопствених спектара галаксије да репродукује дати спектар (Yip et al. 2004a,b). Линеарна комбинација дата је релацијом:

$$F(\lambda) = \sum_{i}^{10} a_i q_i + \sum_{i}^{5} b_i g_i, \qquad (4.1)$$

где је $F(\lambda)$ дати спектар, q_i АГЈ својствени спектри, g_i сопствени спектри галакисије, a_i и b_i су линеарни коефицијенти добијени фитом. Пре саме процедуре фитовања, спектар и сопствени спектри се бинују на исти распон и распоред таласних дужина.

Функција rem_host на сличан начин реконструише дати спектар, али користећи комбинацију различитог броја сопствених спектара из скупа свих доступних својствених спектара и враћа информацију најбољи фит на основу χ^2 статистике.

У оба случаја реконструисана галаксија се одузима од датог спектра и на тај начин се добија чисти АГЈ спектар. Уколико алгоритам не пронађе физички оправдане резултате (нпр. негативну вредност за допринос галаксије домаћина), програм враћа информацију да је допринос галаксије домаћина занемарљив. Пример реконструкције галаксије домаћина дат је на слици 4.2.

4.1.4 Моделовање и фитовање спектра

Основни модел за фитовање спектра AГJ треба да садржи: континуум (обично степени закон или преломљени степени закон) и емисионе линије (широке и уске).

У зависности од распона таласних дужина, односа сигнала и шума (S/N) и типа објекта, модел треба да садржи многе и сложене карактеристике емисије.

Уз **FANTASY** долази неколико стандардних листа⁸ емисионих линија AГJ као што су водоникове линије (на пример, $H\alpha$, $H\beta$, $H\gamma$, $H\delta$, $P\alpha$, $P\beta$, $P\gamma$, $P\delta$), линије хелијума у основ-

⁸Листе линија налазе се на https://github.com/yukawa1/fantasy/tree/main/fantasy_agn/input

Слика 4.2: Пример реконструкције доприноса звездане компоненте галаксије домаћина. Посматрани спектар је означен тачкицама, док су линијама обележене појединачне компоненте, означане на слици.

ном и јонизованом стању (HeI и HeII), основне уске линије (нпр. [O III] $\lambda\lambda$ 4959, 5007ÅÅ, [N II] $\lambda\lambda$ 6549, 6584ÅÅ, [S II] $\lambda\lambda$ 6718, 6723ÅÅ), друге уске и широке AГJ линије, Fe II семиемпиријски модел (Popović et al. 2004; Kovačević et al. 2010a; Shapovalova et al. 2012) и короналне линије као што су [Fe X], [Fe VII], [Ar IV], итд.

Да би користили предефисане сетове линија у FANTASY потребно је креирати фолдер у који FANTASY копира датотеке са линијама у опсегу таласних дужина датог спектра. За то постоје две фуникције: create_input_folder у којем корисиник сам одређује фолдер, те дефинише опсег талсних дужина и automatic_path који аутоматски креира фолдер користећи име спектра и директно из спектра очита границе таласних дужина. Први је креиран са идејом да се користи када исти модел користимо на већем броју спектара, други када нам је потебено да моделирамо мањи број спектара за који користимо различите моделе.

Након креирања фолдера потребно је да дефинишемо модел, за то користимо седеће функције:

- continuum() ова функција позива разломљени степени закон. Аутоматски дефинише његову амплитуду на основу тачке прелома коју корисник дефинише. Тачку (или опсег) дефинише корисник у зависности од спектра који моделује, и потребно је да та тачка буде из опсега који није контаминиран емисионим или апсорпционим линијама;
- create_fixed_model([lista datoteka sa linijama]) креира модел емисионих линија из листе задатих датотека повезаних ширином на полу-висини (енг. *full width half maximum* - FWHM) и померајем;
- create_model([lista datoteka sa linijama]) креира модел емисионих линија из задате листе датотека. Све линије имају слободне параметре као што су FWHM, амплитуда и померај;
- create_tied_model(linija, [lista datoteka sa linijama]) креира модел везан за дату линију. Овај модел превасходно је дизајниран за моделовање уских линија које обично вежемо за [OIII]λ5007 линију.

Слика 4.3: Пример више-компонентног фита оптичког спектра SDSS AГJ тип 1 објекта помоћу FANTASY пакета. Испод посматраног (сива) и модела (црвена) спектра нацртани су: разломљени степени закон као континуум (зелена испрекидана линија) и сви гаусијани (плава и тамно плава – широке компоненте водоникових и хелијум линија; зелена – уске линије, жута - широке [OIII] линије). Црна испрекидана линија представља модел FeII. Доња два панела дају увећану област око Нβ (лево) и Нα линије (десно).

• fe() – креира модел FeII линија базиран на полу-епмиријском моделу дефинисаном у радовима Kovačević et al. (2010a) и Shapovalova et al. (2012).

Поред ових модела, могуће је креирати и само једну линију са create_line(). Такође, могуће је креирати и апсорпциони модел функцијом create_abosrption_model([lista datoteka sa linijama]). Потребно је напоменути да за сада FANTASY за моделовање емисионих и апсорпционих линија користи искључиво гаусијане.

Фитовање података се врши функцијом fit(model, niter) где су аргументи креирани модел и број итерација (користимо већи број итерација, да би осигурали да фит конвергира). Метод фитовања је Левенберг-Маркард, и за то FANTASY корсити sherpa пакет (Burke et al. 2022).

Овде дајемо пример припреме и фитовања једног SDSS спекра (приказаног на слици 4.3), који добро илуструје једноставност употребе развијеног програмског пакета:

```
from fantasy_agn.tools import read_sdss
from fantasy_agn.models import *
s=read_sdss('examples/spec -4213-55449-0777.fits')
s.DeRedden()
s.CorRed()
s.fit_host_sdss()
s. crop(4000, 7000)
automatic_path(s)
cont=continuum(
    в,
    \min_{refer} = 5790,
    refer = 5800.
    \max_{refer} = 5810,
    \max_{index2=4}
helium=create_model(['helium.csv'], max_fwhm=3000)
narrow=create_tied_model(
    name='OIII5007',
    files = ['narrow_basic.csv', 'hydrogen.csv', 'helium.csv'],
    prefix='nr',
    fwhm = 50,
    \min_{-} offset = -300,
    \max \_offset = 300,
    \min_{\text{fwhm}=50},
    \max_{\text{fwhm}} = 1000,
    fix_oiii_ratio=True,
    position = 5006.803341,
    included=True,
    \min_{a} = 0.2
)
fe=create_feii_model(
    max_fwhm=2700
)
zw=create_model(
    ['feii_IZw1.csv'],
    fwhm=fe.fwhm,
    offset=fe.offs_kms
)
```

```
outOIII5007=create_line(
    name="outOIII5007",
    pos = 5006.803341,
    fwhm = 1000,
    ampl=10,
    \min_{\text{fwhm}} = 1000,
    \max_{\text{fwhm}=1800},
    offset = 0,
    \min_{-} offset = -3000,
    max_offset=0
)
outOIII4958 = create_line(
    "outOIII4958",
    pos = 4958.896072,
    fwhm=outOIII5007.fwhm,
    ampl=outOIII5007.ampl / 3.0,
    offset=outOIII5007.offs_kms
)
broad1=create_model(
    ['hydrogen.csv'],
    prefix='broad1',
    min_fwhm = 1500
)
broad2=create_model(
    ['hydrogen.csv'],
    prefix='broad2',
    min_fwhm=2500
)
out=outOIII5007+outOIII4958
model=cont+narrow+broad1+broad2+fe+zw+helium+out
s.fit (model, ntrial=2)
\#Crtanje grafika
import matplotlib.pyplot as plt
plt.plot(s.wave, s.flux, color="#929591", label='Obs', lw=2)
plt.plot(s.wave, model(s.wave), color="#F10C45", label='Model', lw=3)
plt.axhline(y=-70, color='deepskyblue', linestyle='--', lw=2)
```

```
plt.plot(s.wave, cont(s.wave), '---', color="#042E60", label='Continuum', lw=3)
plt.plot(s.wave, narrow(s.wave), label='Narrow', color="#25A36F", lw=3)
plt.plot(s.wave, broad(s.wave), label='Broad_H', lw=3, color="#2E5A88")
plt.plot(s.wave, he(s.wave), label='Broad_He_I', lw=3, color="orange")
plt.plot(s.wave, (fe+zw)(s.wave), '--', color="#CB416B", label='FeII', lw=3)
plt.xlabel('Rest_Wavelength', fontsize=20)
plt.ylabel('Flux', fontsize=20)
#Prikaz rezultata parametara
print(s.gres)
#Cuvanje rezultata parametara
```

s.save_json()

```
55
```

4.1.5 Техничке карактеристике FANTASY програмског пакета

Истичемо опет да је FANTASY код отвореног типа *open source*⁹ написан у руthon програмском језику и заснован на sherpa пројекту (Burke et al. 2022). Термин *open source* односи се на програмске пакете који сви могу да модификују и деле јер су њихови изворни кодови јавно доступни. Пројекти отвореног типа прихватају принципе отворене размене, заједничког учешћа, брзе израде прототипа, транспарентности, меритократије и развоја оријентисаног на заједницу. Пакет sherpa је python пакет за моделирање и фитовање података. Развијен је од стране *Chandra X-ray Center* превасходно за анализу података (спектри и слике) добијених *Chandra* рендгенским телескопом. Пакет sherpa садржи неколико различитих алгоритама за оптимизацију и статистику фита. Статистика доделује нумеричку вредност која описује квалитет фита, где по дефиницији што је нижа вредност статистичке вредности тиме боље модел описује податке. Ту вредност алгоритми оптимизације користе да одреде параметре најбољег фита.

Програмски пакет FANTASY за мерење квалитета фита користи χ^2 статистику из програмског пакета sherpa, а за оптимизацију Левенберг-Маркард метод (Levenberg 1944; Marquardt 1963; Moré 1978). Алгоритми оптимизације мењају параметре модела како би пронашли решење које минимизирају задату статистику. Као основно подешавање FANTASY понавља фит два пута, први пут са задатим параметрима од стране корисника, а други пут са параметрима нађених првим фитом. Међутим кориснику је остављена могућност да зада прозивољан број понављања фита (види секцију 1.5).

У односу на друге доступне кодове (види секцију 1.5) FANTASY је прилагођен за коришћење како напредним корисницима, тако и онима који нису имали пуно прилике да се баве моделовањем и анализом АГЈ спектара. Процедура припреме и коначног фитовања спектра је значајано поједностављена, а укључивање различитих модела за емисионе линије је направљено да буде отворено и флексибилно. FANTASY долази са већ предефинисаним моделима емисионих линија и континуума. Издвајамо овде и полуемпиријски Fe II модел, представљен у радовима Kovačević et al. (2010a) и Shapovalova et al. (2012), који је заснован на атомским карактеритикама Fe II јона. Параметри интензитета линија су везани релативним односима добијеним из теоријских прорачуна (тачније из комбинације статистичке тежине и јачине осцилатора атомских нивоа), такође померај и ширина линија везане су једна за другу. Комплексан оптички део спектра је захтеван за моделовање будући да постоји велики број изузетно широких линија које су међусобно преклопљене, као и контаминиране одговарајућим уским и сателитским линијама. Посебно захтевно је моделовати континуум, јер спектралних региона који нису покривени емисијом готово да нема. Због је тога битно да се при моделовању континуума истовремено разматрају и све остале компоненте из задатог спектралног региона. Управо ту важну особину поседује FANTASY а то је истовремено моделовање и фитовање свих емисионих компоненти, и континумма и свих емисионих линија.

Тренутно, FANTASY није могуће на једном спектру извршавати на више процесора (мада за то у пракси и нема велике потребе јер је брзина извршавања велика, видети каснију дискусију), али у питању већег узорка припрема као и фитовање спектара се може паралелизовати, на принципу један CPU обрађује један објекат у датом тренутку. За паралелизацију може се користити на пример **python** пакет **multiprocessing**¹⁰. На овај начин FANTASY се може користити на великом броју спектара. Пример тога дали смо у 4.2.2. Овде смо моделовали 960 АГЈ типа 1 у спектралном региону $\lambda\lambda$ 4200 – 7000Å. За то смо користили SUPERAST рачунарски кластер Математичког факултета у Београду (Kovačević et al. 2022). SUPERAST је кластер сачињен од 40 CPU јединица и са 64 GB оперативне мемо-

⁹https://opensource.com/

¹⁰https://docs.python.org/3/library/multiprocessing.html

рије. Фитовање свих 960 објеката трајало је ~ 2 часа. Модел који је коришћен је описан у секцији 4.2.2, а за сваки спектар фит смо понављали 5 пута.

Такође мерили смо брзину фита са општим поставкама на једном спектру. Спектар смо моделовали у опсегу $\lambda\lambda4000 - 7000$ Å. Модел који смо користили је:

- 1. разломљени степени закон, који моделира континуум;
- 2. водоникове $H\alpha$, $H\beta$, $H\gamma$ и $H\delta$ линије са три гаусијана (два широка и један уски), параметри широких линија су слободни док су уске линије везане за ширину и померај уске [O III] 5007Å линије;
- 3. линије хелијума HeI 4471Å, HeI 5877Å и HeII 4686Å, чије ширине и померај нису везане;
- уске емисионе линије, све фикисране да на исти померај и ширину као [O III] 5007Å: [O III] 4363Å, [O III] 4959,5007ÅÅ, [N II] 6548,6583ÅÅ, [S II] 6716,6731ÅÅ; односи дублета [O III] 4959,5007ÅÅ, [N II] 6548,6583ÅÅ су фиксирани на 3 (Dimitrijević et al. 2007; Dojčinović et al. 2022).

Мерење смо вршили на процесору *Intel Core i7-8565U*. Процењено време фита је 20.1 ± 0.3 s. Такође смо мерили време одузимања доприноса галаксије домаћина РСА методом имплементираном у FANTASY програмском пакету. Као резултат добили смо да је просечно време 0.545 ± 0.003 s.

Што се тиче грешке параметара фита, FANTASY тренутно користи статистичке процене грешки од стране sherpa алгоритма. У будућности планиран је развој алгоритма за озбиљнију процену грешака параметара фита.

4.2 Модели за фитовање спектара

4.2.1 Припрема спектара за фитовање

За спектралну анализу АГЈ, користили смо FANTASY код. Први кораци представљали су припрему спектара за фитовање. Више детаља о припреми спектара дато је у секцији 4.1, овде ћемо само таксативно навести кораке:

- 1. поправка спектара за галактичко поцрвљење
- 2. поправка за космолошки црвени помак
- 3. отклањање утицаја галаксије домаћина где је то могуће.

У случајевима, код отклањања доприноса зрачења галаскије домаћина, када PCA метода не нађе решење које има физикалног смисла, сматрали смо да је допринос галаксије занемарљив.

На слици 4.4 дат је пример РСА реконструкције галаксије домаћина за објекат J101912.56+635802. из SDSS базе података.

4.2.2 Кинематика $H\alpha$ и $H\beta$ широколинијског региона у SDSS узорку АГЈ типа 1

За потребе истраживања кинематике широколинијског региона користили смо 946 AГJ типа 1 преузетих из SDSS пројекта. Детаљни опис узорка дат је у секцији 3.2.

Након припреме спекатара за фитовање, аплицирали смо симултани више компонентни спектрални фит, како би отклонили уске и сателитске линије и издвојили широке Н α и Н β линије. За потребе фитовања користили смо SUPERAST компјутерски кластер Катедре за астрономију на Математичком факултету Универзитета у Београду (Kovačević et al. 2022). Сви спектри фитовани су у опсегу 4200–7000 Å. Коришћени модел сачињен је од следећих компоненти:

- 1. разломљени степени закон за АГЈ континуум;
- 2. Н α , Н β , и Н γ линије са три гаусијана (два широка и један уски);
- 3. линије хелијума HeI 4471Å, HeI 5877Å и HeII 4686Å са два гаусијана (широки и уски);
- уске емисионе линије, све фикисране да на исти померај и ширину као [OIII] 5007Å: [O III] 4363Å, [O III] 4959,5007ÅÅ, [N II] 6548,6583ÅÅ, [S II] 6716,6731ÅÅ; односи дублета [O III] 4959,5007ÅÅ, [N II] 6548,6583ÅÅ су фиксирани на 3 (Dimitrijević et al. 2007; Dojčinović et al. 2022);
- 5. додатно је уведена широка компонента дублета [O III] (Kovačević-Dojčinović et al. 2022);
- оптички Fe II модел базиран подацима из атомских прелаза (Kovačević et al. 2010а; Shapovalova et al. 2012; Kovačević-Dojčinović & Popović 2015; Popović et al. 2019).

Комплетан узорак је аутоматски фитован овим моделом. Сви фитови су визуелно прегледани и проверени. Примери фита за објекат из подузорка популације Б дат је на слици 4.5 и за популацију А на слици 4.6. Квалитет фита оцењиван је χ^2 статистиком.

Након што смо издвојили профиле широких Н α и Н β линија, мерили смо следеће параметре (види слику 2.8): пуну ширину на пола висине - FWHM, пуну ширину на четвртини максимума FWQM и пуну ширину на 10 % максимума FW10M, асиметрију линије која представља индикатор гравитационог црвеног помака је мерена као разлика центроида линије на различитим нивоима интензитета и позиције пика ширине линије (метод као код Jonić et al. 2016). Тако смо у складу са пуном ширином мерили три асиметрије (слика 2.8) на 50% (*z*50), 25% (*z*25) и на 10% (*z*10).

Додатно мерили смо и флуксеве широких линија, као и оптичку емисију FeII у опсегу 4435–4685 Å да би одредили R_{FeII} параметар. Флукс континуума на 5100 Å мерен је као медијан опсега 5080-5120 Å из реконструисаног чистог АГЈ спектра, Луминозност је израчуната користећи луминозну удаљеност, добијену из космолошког црвеног помака користећи следеће космолошке параметре $H_0 = 70 \text{ kms}^{-1} \text{Mpc}^{-1}$, $\Omega_m = 0.30$ и $\Omega_{\lambda} = 0.70$

Такође, рачунали смо дисперзије емисионих линија σ као други момент профила широких линија користећи релације 2.19 и 2.20 (Peterson & Horne 2004). Ширине и асиметрије линија мерене су из моделованих широких профила линија, док дисперзија σ линија мерена из профила чисте широке линије, која се добија из посматраних спектара од којих је одузет допринос континуума и сателитских линија. Грешку ширине и дисперзије смо проценили као стандардну девијацију из N случајних подскупова спектара (као у нпр. Kollatschny & Zetzl 2011).

Слика 4.4: Пример PCA реконструкције галаксије домаћина за објекат SDSS J101912.56+635802.6. Посматрани спектар означен је сивом бојом, која се скоро не види јер је прекопљена моделом који је представљен црвеном бојом, флукс галаксије црном и чисти АГЈ плавом бојом.

Слика 4.5: Пример резултата више-компонентног фита у опсегу 4200-7000 Å таласних дужина за објекат SDSS J074910.59+284214.5, који представља пример објекта из подузорка популације Б. Испод посматраног (сива) и модела (црвена) спектра нацртани су: разломљени степени закон као континуум (зелена испрекидана линија) и сви гаусијани (плава и тамно плава – широке компоненте водоникових и хелијум линија; зелена – уске линије, жута - широке [OIII] линије). Црна испрекидана линија представља модел FeII. Испод дата су увећане спектралне области око Нβ (лево) и Нα (десно) линија.

4.2.3 Модел примењен за мерење сопственог Болдвиновог ефекта

За истраживање Болдвиновог ефекта издвојили смо узорак од 8 АГЈ типа 1 из SDSS-RM пројекта, за које смо могли да издвојимо квалитетне (висок однос сигнала према шуму) оптичке спектре. Опис избора података и основне информације о узорку дати су у 3.1. Све спектре моделовали смо у опсегу од 4000-7000 Å. Сваки објекат је фитован са три различита модела, а најбољи биран је на основу резултата χ^2 . Опис коришћених компоненти код сва три модела дат је у наставку.

Модел 1 (за који је пример дат на слици 4.7) се састоји од следећих компоненти:

- 1. разломљени степени закон, који моделира континуум;
- водоникове Hα, Hβ, и Hγ линије са три гаусијана (два широка и један уски), параметри широких линија су слободни док су уске линије везане за ширину и померај уске [O III] 5007Å линије;
- 3. линије хелијума са два гаусијана (широки и уски) HeI 4471Å, HeI 5877Å и HeII 4686Å, чије ширине и померај нису везане;
- уске емисионе линије, све фикисране да на исти померај и ширину као [O III] 5007Å: [O III] 4363Å, [O III] 4959,5007ÅÅ, [N II] 6548,6583ÅÅ, [S II] 6716,6731ÅÅ; односи дублета [O III] 4959,5007ÅÅ, [N II] 6548,6583ÅÅ су фиксирани на 3 (Dimitrijević et al. 2007; Dojčinović et al. 2022).

Слика 4.6: Исто као на слици 4.5 само за објекат SDSS J135550.20+204614.5, који представља пример популације А.

Модел 2 је сачињен од модела 1 са додатим оптичким Fe II моделом базираним на подацима из атомских прелаза (Kovačević et al. 2010a; Shapovalova et al. 2012; Kovačević-Dojčinović & Popović 2015).

Модел 3 је проширен модел 2 са додатом широком компонентом [O III] линија, која представља допринос додатног емисионог региона, са присутним избацивањем гаса (Kovačević-Dojčinović et al. 2022).

Флукс Н β и Н α широких линија мерили смо, након издвајања чистих линија, као интеграл густине флукса. Грешке флукса одређивали смо по модифкованој формули из (La Mura et al. 2007):

$$\sigma_F = \sqrt{\left(\frac{\sigma_{\rm cont}}{I_{50}}F\right)^2},\tag{4.2}$$

где је F флукс линије, $\sigma_{\rm cont}$ стандардна девијација у континууму у близини линије, I_{50} интензитет на пола максимума линије. Флукс континуума мерили смо из спектра након одузимања доприниса галаксије, на два места: F_{5100} у као медијан опсега 5080–5120 Å таласних дужина и F_{6200} у опсегу 6180-6220 Å. За грешку у флуксу континуума узели смо стандардну девијацију овог опсега. Еквивалентну ширину линија рачунали смо као у раду Rakić et al. (2017):

$$EW = \frac{F_{\text{line}}}{F_{\text{cnt}}}.$$
(4.3)

Додатне примере фитова оптичких спекатара осталих објеката из истог узорка дали смо у додатку А.

Слика 4.7: Пример фита за AГJ RMID 272. Ово је пример фитовања моделом 1. Горе: дат је приказ фита за цели опсег 4000 – 7000 Å, на слици је приказано: подаци (сива боја), модел (црвена боја), широке и средње широке линије (плава и светло плава редом), разломљени степени закон – континуум (испрекидана зелена линија), уске линије (зелена боја). Доле: увећани спектрални регион око Н β линије (лево) и увећни спектрални регион око Н α -линије.

Слика 4.8: Пример фита моделом 3 за објекат RMID 766

Поглавље 5

Резултати

У поглављу 4 представили смо програмски пакет FANTASY који је намењен моделирању оптичких спектара AГJ типа 1. У првом делу овог поглавља приказујемо примену пакета на различите објекте, од стандардних AГJ типа 1, до транзитних и екстремних догађаја. Коришћени оптички спектри су добијени кроз независне посматрачке програме и инструменте, тако да је алат тестиран на спектрима различитог квалитета, пре свега у смислу спектралне резолуције и односа сигнала према шуму. У другом делу, дајемо резултате примене FANTASY пакета на истраживање два важна проблема разумевања структуре AГJ кроз моделовање два узорка SDSS спектара, ради испитивања карактеристике гаса који емитује оптичко зрачење, тзв. широколинијски регион. У питању су истраживање сопственог Болдвиновог ефекта који представља антикорелацију еквивалентне ширине емисионе линије и флукса континуалног зрачења у близини те емисионе линије, те проучавање кинематике широколинијског региона који емитује Н α и Н β линије. У наставку текста представићемо резултате наведених истраживања.

5.1 Употреба FANTASY програмског пакета за различите АГЈ типа 1

Значајан резултат истраживања презентованог у овој тези је моделовање оптичких спектара АГЈ типа 1, преузетих из независних извора (односно добијених инструментима разних техничких каракетристика), као и посматраних у различитим фазама активности. Стога прво приказујемо примере употребе FANTASY програмског пакета на оптичке спектре АГЈ типа 1, добијене кроз различите посматрачке програме.

1. Моделирање спектара из SDSS прегледа неба. Главна примена и развој FANTASY пакета је усмерена ка моделовању SDSS спектара, тако да је код оптимизован за рад са спектрима из ове базе. На слици 5.1 приказан је један пример фита са FANTASY пакетом оптичког спектра објекта SDSS J135550.20+204614.5, преузетог из SDSS базе података. Модел садржи основне емисионе компоненте (обележене на слици 5.1 линијама различитих боја) присутне у оптичком делу спектра: АГЈ континуум, широке емисионе линије (H I, He I), уске емисионе линије и модел јонизованог гвожђа (видети за детаље поглавље 4.2). У овом раду моделована су два узорка SDSS спектара, чији резултати су детаљније приказани касније у овом поглављу.

2. Моделирање спектара из GAMA прегледа (*GAMA survey*¹) у циљу проучавања еволуције галаксија. GAMA база садржи податке за приближно 300000 галаксија са r <

¹http://www.gama-survey.org/

Слика 5.1: Пример типичне употребе FANTASY вишекомпонентног фита на оптички спектар преузет из SDSS базе података (објекат SDSS J135550.20+204614.5). Моделоване емисионе компоненте су обележене на слици, које су приказане испод посматраног (сива линија) и моделираног (црвена линија). Испод је приказана разлика посматраног спектра и модела.

Слика 5.2: Примена FANTASY вишекомпонентног фита на оптички спектар презует из GAMA базе података, за каталошки број CATID 479971. У питању је NLSy1 тип АГЈ, са израженим линијама јонизованог гвожђа Fe II. Моделоване емисине компоненте су обележене на слици.

Слика 5.3: Пример вишекомпонентног FANTASY фита Н β (лево) Н α (десно) широке линије код NGC 3516 AГJ, за коју је детектована екстремна промењивости, тзв. CL AGN. Испод посматраног (плава линија) и моделованог (наранџаста боја) спектра дати су резидуални спектар (сива линија) и све компоненте гаусијана: широке – плава и пурпурноцрвена линија; уске – зелена; црвена – забрањене линије [Fe VII] λ 4893 и [Fe X] λ 6374. Испрекидана црна линија представља моделовану широку линију, тј. суму свих широких гаусијана. График је преузет из рада Ilić et al. (2020).

19.8 mag. Већина GAMA објеката су галаксије, али одређени проценат њих су AГJ (Gordon et al. 2017, 2018), тако да смо додали прилагођену процедуру за учитавање спектра из GAMA базе података (у питању је процедура read_gama_fits()). На слици 5.2 приказан је пример фита са FANTASY пакетом оптичког спектра објекта каталашког броја CATID 479971, преузетог из GAMA базе података. У питању је NLSy1 тип AГJ, са израженим линијама јонизованог гвожђа Fe II, које су успешно репродуковане.

3. Истраживање АГЈ који мењају тип. У Ilić et al. (2020) користили смо FANTASY да моделујемо комплексне профиле (слика 5.3) $H\alpha$ и $H\beta$ широких линија код објекта NGC3516 који представља АГЈ екстремне промењивости (CL AGN). NGC 3516 је једна од оригиналних шест Сејферт галаксија (Seyfert 1943) и недавно је потврђено да је оптички CL AGN као резултат готово 22 године (1996-2018. године) мониторинга (Shapovalova et al. 2019). Ова кампања је показала да су широке Балмерове емисионе линије готово потпуно нестале 2014. године и поново се појавиле 2018. године као асиметричне и померене ка плавом делу спектра (Shapovalova et al. 2019). NGC 3516 показује комплексне и вишекомпонентне профиле широких емисионих линија, што указује на комплексну кинематику у широколинијском региону (Ilić et al. 2020). У овом раду, FANTASY је такође употребљен за потребе одузимање звездане компоненте, зрачења које долази од околне галаксије, што је од великог значаја у оним фазама еволуције када је зрачење које долази од АГЈ слабо. На графику 5.4 приказан је пример одузимања доприноса зрачења галаксије домаћина, преузето из рада Ilić et al. (2020).

4. Моделовање спектара екстремног транзитног догађаја у центру галаксије. Занимљива примена FANTASY програмског пакета је тестирана у случају екстремног транзитног догађаја у центру галаксија, и то на спектрима различите спектралне резолуције, добијених кроз програм детекције и праћења ових занимљивих феномена (енг. *Public ESO Spectroscopic Survey for Transient Objects* PESSTO) Пројекат је приказан у раду Smartt et al. 2015². Пројекат открива и касније посматра важну класа тзв. оптичких транзиента који

²https://www.pessto.org

Слика 5.4: Пример употребе FANTASY за одузимања доприноса зрачења галаксије домаћина код АГЈ NGC 3516. Приказани су редом посматрани спектар, моделована околна галаксија, као и АГЈ компонента добијена одузимањем околне галаксије од посматраног спектра. Значајне емисионе линије су такође обележене. График је преузет из рада Ilić et al. (2020).

се дешавају у централној области галаксије (енг. *tidal disruption event* - TDE), када долази до јаког блеска и повећања емисије целе галаксије услед разарања звезданог омотача (или целе звезде) од стране јаких плимских гравитационих ефеката супермасивне црне рупе (за више информација видети прегледни рад Gezari 2021). Ови догађаји су посебно занимљиви јер постоји неколико предлога за њихову примену за проучавање својстава супермасивних црних рупа, као што је њена маса или ротација.

На слици 5.5 дајемо пример вишекомпонентног фита оптичког спектра TDE догађаја PS16dtm, који су детектовали Blanchard et al. (2017). Основна емисија континуума и све компоненте емисионих линија (означених разним бојама), су назначене у легенди (за детаље видети рад Petrushevska et al. 2022 у припреми). Истичемо да је за потребе снажне емисије Fe II било неопходно моделовати га са две компоненте: широка (светло зелена) и уска (црна линија) компоненте (Dong et al. 2011; Park et al. 2022). Истичемо да и у случају спектра врло ниске резолуције, какви су често добијени у оквиру PESSTO пројекта, FANTASY код је успешно пронашао и моделовао емисионе линије.

5.2 Сопствени Болдвинов ефекат

Овде представљамо резултате истраживања сопственог Болдвиновог ефекта на 8 АГЈ типа 1 преузети из мониторинг кампање SDSS-RM. Детаљна селекција података представљена је у секцији 3.1 а анализа у 4.2.3. На послетку узорак сачнињава 7 објеката из популације А и 1 из популације Б. Додатно смо за поређење и дискусију резултата, користили резултате анализе сопственог Болдвиновог ефекта код 6 познатих АГЈ типа 1, анализираних у раду Rakić et al. (2017), за које су подаци прикупљани дуги низ година у великој кампањи дугорочног праћења познатих АГЈ типа 1 (Shapovalova et al. 2008, 2010, 2012, 2013, 2016).

Слика 5.5: Пример примене FANTASY кода у случају више-компонентног фита оптичког спектра TDE догађаја PS16dtm у опсегу таласних дужина $\lambda\lambda$ 4100-7000Å, за спектар који је снимљен око 170 дана после транзитног догађаја. Основна емисија континуума и све компоненте емисионих линија (означених разним бојама), су назначене у легенди (за детаље видети рад Petrushevska et al. 2022 у припреми).

Сопствени Болдвинов ефекат анализирамо као логаритам еквивалненте ширине log(EW)у функцији логаритма континуума измереног у близини емисионе линије $log(F_{cnt})$. Додатно истраживали смо зависност између флукса линије (F_{line}) и флукса континуума мереног у близини линије (F_{cnt}) . Такође, проучавали смо и како се однос флуксева $H\alpha/H\beta$ мења са континуумом у контексту Болдвиновог ефекта. Проверавали смо зависност Едингтоновог односа са нагибом Болдвиновог ефекта β . На крају секције дато је поређење сопственог са глобалним Болдвином ефектом за свих 8 разматраних објеката. Прегледности ради, даље у тексту за термин Болдвинов ефекат користимо скраћеницу БЕФ.

5.2.1 Мерење сопственог Болдвиновог ефекта

Примери светлосних крива за два карактеристична објекта популације A и Б, заједно са одговарајућим сопственим БЕФ дати су на сликама 5.6–5.9. На сликама сопственог БЕФ назначени су нагиб БЕФ (β) као и Пирсонов коефицијент корелације r са одговарајућом Pвредности нулте хипотезе. Подаци за свих 8 објеката сумирани су у табели 5.1. Светлосне криве и БЕФ за преостале објекте дати су у додатку A.

Како би израчунали EW и истражили сопствени БЕФ, користили смо измерене флуксеве Н α и Н β линија, и одговарајући континуум измерен у близини емисионе линије. За Н α линију континуум је измерен на 6200 Å, а за Н β континуум на 5100 Å. EW смо рачунали по релацији 4.3, а нагиб β из линеарног фита претпостављајући линеарну зависност:

$$\log EW_{\lambda} = A + \beta \log F_{cnt}, \qquad (5.1)$$

где је A нормализациона константа. Rakić et al. (2017) су прочавали промену сопственог БЕФ у времену, тако што су делили податке на основу стања флукса (на високо и ниско стање флукса), међутим овде то није било могуће због лошије временске резолуције (велики размак између две епохе). Истраживање еволуције сопственог БЕФ (нпр., његова промена кроз време) захтева пажљиву анализу кривих сјаја ради праћења трендова, индетификације правих и локалних максимума. Ово истраживање је у плану за будући рад након што пројекат SDSS-V обезбеди више података за сваки од објеката. Додатно, у анализи није узимано у обзир кашњење сигнала у линији (као што је то рађено у нпр. Rakić et al. 2017 истраживању), будући да не утиче значајно на анализу.

Слика 5.6: Светлосне криве за RMID 272. Од горе према доле дате су светлосне криве за: флукс Н β , флукс континуума на 5100 Å, флукс Н α флукс континуума на 6200 Å. Флукс линија дат је у јединицама 10⁻¹⁷ erg cm⁻²s⁻¹, а флукс континуума у 10⁻¹⁷ erg cm⁻²s⁻¹Å⁻¹.

Из приказаних резултата јасно је да је сопствени БЕФ присутан у свим објектима, које додатно потврђује и Пирсонов коефицијент корелације. Нагиб сопственог БЕФ (β) креће се у распону од -0.33 до 0.58 за Н β линију, док код Н α опсег је [-0.34, -0.69]. Одговарајући Пирсонови коефицијенти корелације зависе од односа сигнал/шум и у свим објектима указују на снажну антикорелацију између ЕW линије и одговарајућег континуума. Нешто слабија корелација примећена је код Н β линије, која вероватно проистиче из компликованог спектралног региона око те линије. Тај регион контаминиран је FeII комплексом линија, а у комбинацији са аутоматским одузимањем континуума, може довести до тога да не можемо прецизно да издвојимо чисте профиле широке линије, као што је то могуће код Н α линије.

5.2.2 Корелације флуксева линија и континуума

Поред споственог БЕФ истраживали смо и корелације између флукса широких емисионих линије и одговарајућег континуума. Примери резултата за два изабрана објекта (RMID 272 и RMID 341) дати су на сликама 5.10 и 5.11, док су комплетни резултати за преостале објекте из узорка дати у табели 5.2, а графици у додатку А.

Флукс Н α линије поредили смо са континуумом на 6200А, а флукс Н β линије са континуумом на 5100 Å. Податке смо фитовали претпостављајући да важи степени закон (Rakić et al. 2017):

$$F_{\rm line} = k F_{\rm cnt}^{\alpha}, \tag{5.2}$$

и након што логаритмујемо леву и десну страну добијамо линеарну зависност:

$$\log F_{\rm line} = \alpha \log(F_{\rm cnt}) + B, \tag{5.3}$$

Табела 5.1: Вредности сопственог БЕФ за свих 8 АГЈ типа 1. Колоне: RMID – SDSS-RM ознака објекта; нагиб сопственог БЕФ (β) за Н α и Н β широке линије; одговарајућа популација објекта; слике повезане са резултатима објеката: прва – светлосне криве, друга: БЕФ наведеног објекта. Испод резултата за сваки од објеката дата је средња вредност нагиба сопственог БЕФ $< \beta >$, као и одговарајућа стандардна девијација $\sigma(\beta)$

RMID	${ m H}eta$	$\frac{3}{\mathrm{H}\alpha}$	$L_{\rm bol}/L_{\rm Edd}$	Популација	слика
272	-0.40	-0.45	0.100	А	5.6, 5.7
341	-0.51	-0.69	0.126	Б	5.8, 5.9
766	-0.36	-0.47	0.126	А	A.7, A.8
126	-0.51	-0.43	0.079	А	A.9, A.10
101	-0.49	-0.34	0.251	А	A.11, A.12
775	-0.58	-0.50	0.032	А	A.13, A.14
184	-0.41	-0.35	0.251	А	A.15, A.16
776	-0.33	-0.54	0.016	А	A.17, A.18
$<\beta>$	-0.44	-0.47	_	_	_
$\sigma(\beta)$	0.08	0.10	_	_	_

Слика 5.7: Сопствени Болдвинов ефекат за RMID 272. Лево: $\log(EW(H\beta))$ у функцији $\log(F_{5100})$, десно: $\log(EW(H\alpha))$ у функцији $\log(F_{6200})$. На сликама су назначени одговарајући нагиб сопственог БЕФ (β), Пирсонов коефицијент корелације r заједно са P. Линеарни фит означен је пуном линијом. Флукс контнуума дат је у јединицама $10^{-17} \,\mathrm{erg} \,\mathrm{cm}^{-2} \mathrm{s}^{-1} \mathrm{\AA}^{-1}$

Слика 5.8: Исто као на слици 5.6 само за RMID 341

Слика 5.9: Исто као а слици 5.7 само за RMID 341

Табела 5.2: Корелације флукса линија са континуумом за свих 8 АГЈ. Колоне: RMID – SDSS-RM ознака објекта; нагиб линеарног фита α за Н α и Н β широке линије; Пирсонов коефицијент корелације r; средња вредност односа Н α /Н β слике повезане са резултатима објеката. Испод су дате средње вредности за нагиб линеарног фита свих објеката $< \alpha >$ као и одговарајућа стандардна девијација $\sigma(\alpha)$.

	α		r				
RMID	${\rm H}\beta$	$\mathrm{H}\alpha$	${\rm H}\beta$	$\mathrm{H}\alpha$	средње па/пр	1р слика	
272	0.60	0.55	0.84	0.77	2.31	5.10	
341	0.49	0.31	0.68	0.48	2.40	5.11	
766	0.64	0.53	0.78	0.89	2.17	A.19	
126	0.49	0.57	0.32	0.76	2.56	A.20	
101	0.51	0.66	0.69	0.83	2.36	A.21	
775	0.42	0.50	0.38	0.57	2.35	A.22	
184	0.59	0.65	0.76	0.81	2.15	A.23	
776	0.67	0.46	0.83	0.82	2.01	A.24	
$< \alpha >$	0.55	0.53	_	-	_	_	
$\sigma(\alpha)$	0.08	0.10	_	-	—	_	

где F_{line} је флукс широке емисионе линије, F_{cnt} флукс континуума, α нагиб линеарног фита и $B = \log k$ нормализациона константа.

У свим објектима нађен је висок степен корелације између флукса линије и континуума. Такав резулат је и очекиван код претпоставке да је фотојинизација од стране централног континуума главни механизам загревања широколинијског региона, и касније продукције широких емисионих линија (Osterbrock & Ferland 2006). Код RMID 126 и RMID 775 приметно је мало веће расипање података код Н β линије, што је и одражено мало нижим коефицијентом корелације. Нагиб α код Н β линије креће се у распону од 0.42–0.67, док код Н α линије α узима вредности од 0.31–0.66.

5.2.3 Однос флуксева $H\alpha/H\beta$ у зависности од флукса континуума

На слици 5.12 приказани су однос флуксева $H\alpha/H\beta$ широких линија за комплетан узорак од 8 објеката, у поређењу са теоријском вредношћу $H\alpha/H\beta \sim 3$ (пуна линија), чистог јонизационог модела (Osterbrock & Ferland 2006).

Са слике 5.12 индикативно је да сви објекти не показују корелацију са континуумом, већ напротив, углавном показују насумичну распоределу око средње вредности за дати објекат. Такође, средње вредности су код свих објеката испод теоријске вредности 3, осим код RMID 126, где у појединим епохама овај однос прелази изнад теоријске вредности. Овде треба напоменути да нисмо узимали у обзир ефекте поцрвљењења галаксије домаћина, као и оптичке дебљине који могу да утичу на резултате (Ilić et al. 2012).

5.2.4 Едингтонов однос и сопствени БЕФ

Додатно је испитано постоји ли корелација између Едингтонвог односа $L_{\rm bol}/L_{\rm Edd}$ са нагибом сопственог БЕФ (β). Едингтонов однос представља меру јачине акреције код АГЈ, и као такав може да указује на еволутивну фазу у којој се налази дато АГЈ.

За прорачун Едингтоновог односа, неопходно је направити процену укупне луминозности код АГЈ. Овде је болометријска луминозност рачуната по често примењиваној

Слика 5.10: Корелације флукса линија са одговарајућим континуумом за RMID 272. Лево: корелација флукса Н β линије са флуксом континуума на 5100 Å, десно: корелација флукса Н α линије са флуксом континуума на 6200 Å. На слици су назначени Пирсонов коефицијент корелације и P вредност, као и α нагиб добијен линеарним фитом који је означен пуном линијом. Флукс линија дат је у јединицама $10^{-17} \,\mathrm{erg} \,\mathrm{cm}^{-2} \mathrm{s}^{-1}$, а флукс континуума у $10^{-17} \,\mathrm{erg} \,\mathrm{cm}^{-2} \mathrm{s}^{-1}$ Å

Слика 5.11: Исто као на слици 5.10 само за RMID 341.

Слика 5.12: Однос флуксева Н α /Н β широких линија у зависности од континуума на 5100Å. Плава пуна линија представља теоријску вредност односа ~ 3. Флукс конитнуума дат је у 10⁻¹⁷ erg cm⁻²s⁻¹Å⁻¹.

претпоставци за квазаре:

$$L_{\rm bol} = k_{\rm bol} \lambda L_{\lambda},\tag{5.4}$$

где је $k_{\rm bol} \approx 10$ средња болометријска корекција одређена за квазаре из SDSS базе података (Richards et al. 2006). Едингтонова луминозност процењена је на основу

$$L_{\rm Edd} = 1.26 \times 10^{38} \left(\frac{M_{\rm BH}}{M_{\odot}}\right).$$
 (5.5)

Процењена маса супермасивне црне рупе за објекте из разматраног узорка је преузета из каталога Shen et al. (2019b). С обзиром на то да у нашем узорку имамо само један објекат из популације Б, придружили смо и 4 објекта из Rakić et al. (2017). Едингтонов однос за ова четри објекта мерили смо користећи подакте из Ilić et al. (2017). Слика 5.13 приказује зависности нагиба β код БЕФ од Едингтоновог односа за анализиран узорак од 8 објеката, као и придружених 4 објеката популације Б из Rakić et al. (2017). На свим графицима означени су Пирсонов коефицијент корелације са одговарајућом P вредношћу.

Приказана анализа показаје да постоји корелација између Едингтоновог односа и јачине Болдвиновог ефекта код Н α линије (горњи панели на слици 5.13). Корелација је изузетно висока код објеката популације А. Разматрањем само популације А коефицијент корелације је значајно порастао r = 0.95. Међутим, одговарајућа вредност P = 0.001 указује на то да указује да овај резултат требамо узети с опрезом. Са друге стране, у случају Н β линије, корелација не постоји. Висока корелације које смо нашли у случају Н α линије само за популацију А изостала је у случају популације Б и Н β линије.

5.2.5 Глобални Болдвинов ефекат

На крају разматрали смо и сопствени БЕФ у конктексту глобалног БЕФ за водоникове Н α и Н β линије, за наш узорак од 8 АГЈ типа 1, слично као што је рађено и у Rakić et al. (2017). На слици 5.14 приказана је зависност ЕW ширине са луминозношћу одговарајућег

Слика 5.13: Зависност нагиба β сопственог БЕФ у односу на Едингтонов однос $L_{\rm bol}/L_{\rm Edd}$. Нашем узорку придружени су резултати објекти из популације Б из (Rakić et al. 2017). Горња слика: однос за Н α линију, укупан узорак (лево), само популација А (средина) и популација Б (десно). Доња слика: исто као горња само за Н β линију. На свим графицима дати су Пирсонови коефицијенти корелације, заједно са P вредношћу.

континуума за Н β линијуу (лево) и за Н α линију десно. Обе линије показују слаби инверзни глобални БЕФ (Н $\beta \beta = 0.12$ Н $\alpha \beta = 0.09$). Поређења ради, Rakić et al. (2017) су коришћењем резултата за 6 АГЈ типа 1 и великог узорка SDSS квазара из каталога Shen et al. (2011) показали да глобални БЕФ не постоји код Н β линије (слика 2.5). То је у сагласности са претходним истраживањима, која су показала да глобални БЕФ није присутан код Балмерових линија водиника (Dietrich et al. 2002b; Kovačević et al. 2010a). Чињеница да се код нашег узорка од 8 објеката јавља благи глобални БЕФ, је врло вероватно последица селекционог ефекта, односно малог броја разматраних објеката.

5.3 Испитивање кинематике широколинијског региона

У овом поглављу представићемо детаљне резултате анализе 946 АГЈ типа 1 из SDSS базе (ови резултати публиковани су у Rakić 2022). У табели 5.3 дати су сви измерени параметри: идентификациони број (SDSS ID) објекта, црвени помак, луминозност континуума на 5100 Å, оптичка FeII емисија у виду $R_{\rm FeII}$ параметра, ширине и асиметрије на различитим нивоима интензитета за Н α и Н β линије. Комплетна табела дата је у додатку Б.

Да би илустровали успешност аутоматског фитовања, нацртали смо завистност луминозности издвојених Н α и Н β од луминозности континуума на 5100 Å (слика 5.15). Као што је и очекивано из фотојонизационе теорије која објашњава настанак широких линија (Osterbrock & Ferland 2006), али из посматрања (Ilić et al. 2017; Dalla Bontà et al. 2020), широке емисионе линије су снажно корелисане са луминозношћу континуума.

На сликама 5.15 и 5.16 приметне су тачке које одударају од тренда, посебно на слици

Слика 5.14: Глобални Болдвинов ефекат за Н β линију (лево) и за Н β линију (десно). Кориштени су подаци за свих 8 АГЈ типа 1 из нашег узорка (мале црне тачке). Црвени велике тачке представљају средњу вредност за сваки објекат. Линеарни најбољи фит означен је пуном црвеном линијом. На слици су дати резултати најбољег фита β као и Пирсонов коефицијент корелације r, заједно са P вредношћу. Луминозност континуума дата је у erg s⁻¹, а ЕW линија у Å.

5.16 где имамо значајне разлике између ширине Н α и Н β линије, сто је физички неоправдано. Идентификација тих тачака показала је да ти објекти заправо не представљају АГЈ типа 1, него су последица лоше класфикације од стране аутоматских алгоритама SDSS базе. Пример једног таквог објекта дат је на слици 5.17. SDSS алгоритам ради на милионима спектара, тако да су овакве и сличне погрешне класификације очекиване. У нашем узорку пронашли смо укупно 49 оваквих објеката, што је само 4% од укупног узорка. С обзиром на то да немају утицаја на коначне резултате, нисмо их уклањали. Индетификација изузетака код аутоматског фитовања великог броја објеката је у плану за развој FANTASY програмског пакета.

На слици 5.16 FWHM(H α) дат је у функцији FWHM(H β) за укопан узорак типа 1 АГЈ, заједно са 1 на према 1 односом у виду испрекидане линије. За укупан узорак одређен је и Пирсонов коефицијент корелације $\rho = 0.67$ који указује на снажну корелацију између ширина Н α и Н β линија.

Да би истражили да ли је кинематика широколинијског региона превасходно одређена гравитационим утицајем супермасивне црне рупе кренули смо од следећих аргумената (аргументи су изведени из разматрања у поглављу 2):

- однос пуних ширина на различитим нивоима максимума би требали бити константни са променом луминозности;
- гравитациони црвени помак би требао бити, а овде га разматрамо као унутрашњи помак, повезан са квадратом пуних ширина линије на различитим нивоима интензитета линије (Jonić et al. 2016; Popović et al. 2019).

Да би тестирали да ли су испуњени ови аргументи истраживали смо релације између ширина линија са луминозношћу, као и односе асиметрија са ширинама линија. На слици 5.18 дати су односи логаритама пуне ширине на четвртини и половини максимума у функцији са логаритмом луминозности континуума на 5100 Å (log λL_{5100}) за Н β (десно) и Н α (лево) линије. Додатно смо груписали податке у бинове на основу луминозности континуума. За ширину бина изабрали смо 0.5 dex, а за вредности односа ширина линија узели смо средњу вредност, те смо посебно разматрали популацију А и популацију Б.

На слици 5.18 јасно се види константан тренд, тј да су ширине константе са порастом луминозости континуума, што је посебно нагалшено када узимамо у обзир груписане

SDSS ID	\$	λL_{3}	$R_{ m FeII}$	FW	HM	FW	QM	FW	10M	c_{z} 5	0	22	5	z1	0
		$\left[\mathrm{ergs}^{-1} ight]$		[km	$[S^{-1}]$	[km	s^{-1}	[km	s^{-1}]	[kms		[km	s^{-1}	[km;	S^{-1}
				$H\beta$	$H\alpha$	${ m H}eta$	$H\alpha$	$\mathrm{H}ar{eta}$	$H\alpha$	$\mathrm{H}ar{eta}$	$H\alpha$	${ m H}eta$	$H\alpha$	$H\beta$	$H\alpha$
J145824.46+363119.5	0.25	44.51	0.68	2120	2100	3800	3200	6860	5940	0	0	150	0	150	0
J095302.64+380145.2	0.27	44.55	0.25	3210	3020	5550	4620	8320	7220	290	0	1020	140	1460	730
J004222.18-055823.4	0.2	44.02	0.43	3650	2700	5250	4300	6860	6210	0	0	0	-180	0	-270
J142245.78+630739.1	0.16	43.94	0.59	3070	2240	5110	3570	7450	5530	290	0	730	00	1020	230
J103208.42+405508.8	0.4	44.89	0.56	4160	3890	7080	6030	10370	9140	360	0	1240	180	1750	370
J225603.37+273209.5	0.36	45.25	0.22	5460	4540	7800	7530	0866	10560	0	2520	0	3210	0	3210
J032559.97+000800.7	0.36	44.8	0.11	6920	6850	9830	9820	12670	12650	0	460	0	500	0	500
J140839.00+630600.5	0.26	44.51	0.18	5250	5120	7810	7500	10650	10290	0	180	0	460	0	870
J224113.54-012108.8	0.06	43.21	0.09	6740	5760	9740	8140	12600	10560	2640	-90	2710	- 90	2780	-140
1105007 751112000 R	n 12	44 51	0.34	2190	2330	3650	3560	6780	5850	0	0	290	0	950	370

SDSS ID	табела дата је у до	интензитета, и одг	континуума $\log \lambda L_{p}$	Табела 5.3: Мерени
$z \lambda L_{ extsf{single}}$	датку Б	оварајуће асиметрије (₅₁₀₀ Å, ооптичка Fe II ем	1 спектрални параметр
$R_{ m FeII}$		z50, z25,	исија $R_{\rm F}$	и за 946 ;
FWHM		<i>z</i> 10). Ширине	_{е II} , пуна шири	SDSS ALT INP.
FWQM		е линија и аси	ина на пола (I	Колоне су: S
FW10M		метрије су да те з	FWHM), четврини	DSS ИД објекта, ко
z50		а Н α и Н β	(FWQM), $_{\rm F}$	ОСМОЛОШКИ Ј
z25		широке линије.	1 10% (FW10M)	црвени помак, л
z10		Комплетна	максимума	ІУМИНОЗНОСТ

Слика 5.15: Луминозност Н α (горе) и Н β (доле) линија у функцији луминозности континуума на 5100 Å. Луминозност је дата у јединицама erg s⁻¹.

Слика 5.16: FWHM(H α) дат је у функцији FWHM(H β) за укопан узорак типа 1 АГЈ. Испрекидана линија представља 1-1 однос. Пирсонов коефицијент заједно са P вредношћу је назначен на слици.

Слика 5.17: Пример спектра који је индетификован да одудара од трендова приказаних на сликама 5.15 и 5.16. Ради се о спектру који је погрешно класификован као АГЈ типа 1 од стране SDSS аутоматских алгоритама.

податке, а додатна потврда је и низак Пирсонов коефицијент корелације, који је 0.24 у случају Н α и 0.12 за Н β линије. Мала девијација од константног тренда постоји на ниској луминозности континуума, али вероватно је последица малог броја података код груписања. Даље смо ово тестирали (слика 5.19) и за све остале мерене ширине (FWHM, FWQM, FW10M) и дошли смо до истог резултата, тј да су односи ширина линија независни од пораста луминозности континуума.

За проверу другог аргумента испитивали смо, на нашем узорку, функционалну зависност асиметрије линије на различитим нивоима максимума интензитета са одговарајућим ширинама. Уколико је гравитациони утицај супермасивне црне рупе одређује кинематику широколинијског региона очекујемо линеарну зависност логаритма гравитационог црвеног помака те одговарајуће ширине линије. На графику 5.20 нацртане су асиметрије линија на мерене на 50% (горе), 25% (средина) и 10% (доле) максималног интензитета линије и одговарајуће ширине широке Н β (лево) и Н α (десно) линије. Подаци су додатно раздвојени на популација А (отоврени кружићи), и популацију Б (зелени пуни кружићи). Битно је напоменути да смо, на исти начин као и Jonić et al. (2016) и Popović et al. (2019) из разматрања искључили објекте који су показивали плаву асиметрију. Такође, додатно из анализе смо искључили тачке чија је мерена асиметрија испод 70 ${\rm km\,s^{-1}}$, што представља инструменталну резолуцију SDSS. Са графика 5.20 јасно можемо да видимо да су ширине на половини и четвртни максимума у корелацији са одговарајућим асиметријама. Корелација је посебно изражена у случају FWHM $H\beta$ линије, што је додатно потврђено и са високим Пирсоновим коефицијентом корелације 0.60 (H β). Асиметрија мерена у крилима линија је већа и показује слабију корелацију са одговарајућом ширином (видети FW10M vs. z10 на слици 5.20 доњи графици). Лако је уочити да Н β показује систематски већу корелацију у односу на $H\alpha$ линију. Слабија корелација код $H\alpha$ линије може да указује на дисколику геометрију региона који емитује наведену линију. Овде треба нагласити да је мерење крила линија посебно осетљиво на отклањање континуума. Са слике 5.20

Слика 5.18: Однос логаритама FWQM и FWHM у функцији $\log \lambda L_{5100}$ за $H\beta$ (лево) и $H\alpha$ (десно) линију. Популација А означена је отвореним кружићима, а популација Б зеленим круговима. Усредњена вредност односа ширина за груписану луминозност у континууму (0.5dex) дата је обележена је већим круговима. На слици су дати Пирсонов кефицијент корелације ρ са одговарајућом вредношћу P. Луминозност континуума дата је у erg s⁻¹.

Слика 5.19: Логаритми различитих односа ширина линија (означени у горњем десном углу) у фнкцији логаритма континуума груписани у бинове луминизитета 0.5 dex. Луминозност континуума дата је у erg s⁻¹.

Слика 5.20: Корелације између црвене асиметрије линије (гравитациони црвени помак) мерене на 50% (горе), 25% (средина) и 10% (доле) интензитета линије и одговарајуће ширине широке Н β (лево) и Н α (десно) линије. Популација А означена је отвореним кружићима, а популација Б зеленим пуним кружићима. Најбољи линеарни фит назначен је пуном линијом. Одговарајући Пирсонов коефицијент корелације, заједно са P вредности дат је на сваком графику. Ширине као и одговарајуће асиметрије дате су у km s⁻¹.

приметно је да нема значајније разлике ако се посебно разматрају популација А и Б.

Испитивали смо и подузорак објеката (око ~10% од укупног узрока) код којих је измерена плава асиметрија у широким линијама. Испитане су исте зависности као код црвене асиметрије (приказане на слици 5.20), и пронађено је да плава асиметрија не показује никакву функционалну зависност са одговарајућом ширином линије што је и очекивано. Плава асимтерија у профилима широких линија указује на могуће постојање нерадијалног кретања гаса, односно избацивање гаса ка посматрачу.

Да би упоредили сличности и разлике $H\alpha$ и $H\beta$ емисионих региона, али и разлике између објеката из популације А и попоулације Б упоредили смо њихове средње и rms профиле. Средњи и rms профили за нормиране Н α и Н β широке линије приказани су на слици 5.21 за цео узорак. Оба средња профила за укупну популацију (леви график на слици 5.21) су симетрична и готово индентична. Додатно смо тестирали постоји ли разлика у профилима линија популације А и популације Б (слика 5.21, средњи и десни график). Очекивано профили популације Б су шири у односу на популацију А, оба су симетрична, са веома суптилном црвеном асиметријом код Н α линије. Међутим, rms профили за популацију А и популацију Б се разликују. Средњи квадратни корен профил за популацију Б показује две грбе које указују на доминатно ротационо кретање гаса (види дискусију у Popović et al. 2019), док је средњи квадратни корен профил код популације A објеката углавном скоцентрисан у средини. Међутим, ако посматрамо само **rms** профил за $H\beta$ линију за објекте чији профили показују црвену асиметрију (слика 5.22) видимо да обе популације (популација А и Б) показују две симетричне грбе, тј. показују да је доминантно ротационо кретање гаса. Овај резултат је у сагласности са резултатима пронађеним у Popović et al. (2019).

Проверавали смо и да ли асиметрије мерене на 50%, 25% 10% максимума интенизитета линије зависи од положаја на главном низу квазара (слика 5.23). Прво што приметимо на слици, као што је и очекивано (види поглавље 1.2), јесте да наш узорак покрива "облик лакта" на главном низу. Код популације А приметно је да асиметрија нема везе са полозхајем на главном низу, док популација Б показује више асиметричне профиле што је у сагласности са резултатом из Zamfir et al. (2010), где је показано да код популације Б шире линије показују веће црвене асиметрије. На слици 5.24 приказани су хистограми асимтетрије мерене на 50%, 25% и 10% интензитета широких Н α и Н β линија за објекте из популације Б. Већина обкјеката не показују или показују веома слабу асиметрију мерену као z50, док објекти из популације Б показују више асиметричне профиле Н β линије, што се такође види на слици 5.23. Што се тиче крила можемо да приметимо (средњи и леви графици на слици 5.24) да више објеката показује асиметрију, што је посебно изражено код Н β линије. Ово може бити последица лоше процене Fe II емисије, као и котинуума.

На слици 5.25 представљена је зависност односа FWHM/ σ од FWHM за Н α (зелени пуни кружићи) и Н β (отворени кружићи) широке линије. Резултати показују да профили широких линија варирају систематично са порастом ширине линија и да нема разлике у варијацији за Н α и Н β линије. Шире линије показују више профиле са равнијим врхом (енг. *flat-topped*), док оне уже показују израженија крила (Collin et al. 2006; Kollatschny & Zetzl 2011). Наши резултати показују исти тренд као код Kollatschny & Zetzl (2011), тј. да је доминантан процес ширења линија ротационо кретање гаса. Додатна потврда постојања нелинеарног тренда између FWHM и профила линије (мерена као однос FWHM/ σ) је и висок Спирманов кеофицијент корелације (0.82 за Н α и 0.78 за Н β линију). Такође, приметан је исти непрекидан прелаз између популације A и Б за Н α и Н β линију, што подржава тезу да области које емитују ове две широке линије имају исте кинематичке особине.

Слика 5.21: Горе: средњи профил (пуна линија) и **rms** профил (испрекидана линија) широких H α (црна боја) и H β (зелена боја) за цели узорак. Средина: средњи профил (пуна линија) и средњи квадратни корен (испрекидана линија) широке H α линије за популацију А (танка црна линија) и за популацију Б (дебља црна линија). Доле: исто као у средини, али за Н β линију.

Слика 5.22: Средњи профил (пуна линија) и **rms** профил (испрекидана линија) за Нβлинију, за популацију А (танка линија) и популацију Б (дебља линија) за подузорак који показују црвену асиметрију

Слика 5.23: Положај узорка на FWHM(H β)– $R_{\rm FeII}$ равни (такозвани главни низ AГJ) приказујући плаву и црвену асиметрију H β линије мерену на 50% (график горе), 25% (средњи график) и 10% (график доле) макисмалног интензитета линије. Подела на популацију А, Б и екстремну популацију А означена је линијама и назначена на графицима.

Слика 5.24: Хистограм асиметрије мерене на 50% (леви графици), 25% (средњи графици), анд 10% (десни графици) интензитета широке Н α (графици горе) и Н β линије (графици доле), за популацију А (плава линија) и популатион Б (зелена линија) објеката.

Слика 5.25: Однос FWHM/ σ у функцији FWHM за Н α (отворени кружићи) и Н β (зелени пуни кружићи) широке линије. Средња грешка дата је на графику.

Поглавље 6

Дискусија

Детаљним моделирањем и анализом преко 1500 оптичких спектара АГЈ типа 1, преузетих из SDSS базе података, измерени су спектрални параметри са циљем испитивања физичке позадине посматраних (анти)корелација између емисионих линија и континуума, као и кинематичких особина широколинијског региона. Прецизније, проучаван је сопствени Болдвинов ефекат, који се одређује сакупљањем спектара једног објекта током што дужег временског периода. У овом раду, коришћени су спектри за 8 АГЈ типа 1, прикупљани током 6 година у оквиру SDSS-RM пројекта.

У овом поглављу дискутуоваћемо резултате представљене у поглављу 5, а пре свега могућности и предности коршћења програмског пакета FANTASY (секција 6.1). У секцији 6.2 прокоментарисаћемо резултате који следе из мерења сопственог Болдвиновог ефекта, представљене у 5.2, а у секцији 6.3 дискутујемо резултате из 5.3.

6.1 Могућности и предности FANTASY програмског пакета

FANTASY је програмски пакет у потпуности написан у **python** програмском језику. Код је отвореног типа и јавно доступан широј научној заједници. Превасходно је намењен моделовању оптичких спектара АГЈ, али се може користити и ултраљубичастом и блиском инфрацрвеном делу спектра. У поглављу 4 детаљно смо описали програмски пакет,, док смо у поглављу 5 описали резултате остварене његовим коришћењем.

Програмски пакет FANTASY смо првенствено испитивали користећи спектре преузете из SDSS базе. Усредсредили смо се на два различита научна проблема, истраживање сопственог Болдвиновог ефекта и проучавање кинематике широколинијског региона. Оба истраживања служила су специфичном тесту. Сопствени Болдвинов ефекат је показао колико добро FANTASY може да моделује појединачне објекте који се мењају у току времена и ту је посвећено много пажње прецизнијим поставкама модела. Истраживање кинематике широколинијског региона захтевао је моделовање великог броја различитих објеката, што у пракси значи да није било могуће прецизно постављање модела за сваки објекат, него коришћење уопштеног једног модела за целокупни скуп објеката/узорак. У оба случаја, FANTASY се показао као врло поуздан, сви фитови су корвергирали без приметног сатурисања резултујућих параметара фита, давајући физички очекиване вредности за спектралне параметре. Посебно истичемо да је у оба тестирана проблема, моделовање и отклањање утицаја зрачења звездане компоненте уз помоћ РСА методе успешно реализовано.

Додатно, FANTASY је тестиран и на другим различитим примерима оптичких спекта-

рара АГЈ. Посебно је оптимизован за рад са спектрима из GAMA пројекта, али и веома захтевнм случајевима попут екстремног транзитног догађаја TDE PS16dtm (5.1). Поред тога, моделовали смо и комплексне профиле емисионих линија $H\alpha$ и $H\beta$ код оптичког екстремно промењивог АГЈ (CL AGN) NGC 3516 (Ilić et al. 2020).

FANTASY је дизајниран да садржи све неопходне процедуре за комплетну анализу спектара, тако да је са њим могуће учитати различите типове записа спектара, претворити таласне дужине у јединице у вакууму, ребиновати спектре, извршити поправку за галактичко поцрвенљење, космолошки црвени помак, проценити допринос зрачења галаксије домаћина, припремити комплексне моделе емисионих линија, и напослетку фитовати спектар. Предефинисани сетови линија и модела значајно убрзавају процес моделовања. Додатни модели и линије се врло лако могу увести од стране корисника. На крају, истичемо да даљи рад са резултатима фитовања (визуализација и прорачун) и добијеним спектралним параметрима је врло једноставно, и приказано је кориснику кроз детаљне примере, доступне на званичним страницама **FANTASY** програмског пакета.

У поређену са друга два доступна специјализована програмска пакета за фитовање оптичких спектара AГJ pyQSOFit (Guo et al. 2018) и QSfit (Calderone et al. 2017), који су досада нашли велику примену нпр. на SDSS спектрима (видети на пример: Shen et al. 2011; Shen et al. 2019b;Rakshit et al. 2020), FANTASY је значајно једноставнији за коришћење, а при томе садржи све неопходне процедуре за обраду спекара. Истовермено фитовање континуума и емисионих линија, што смо навели као неопходну особину, издвајају QSfit и FANTASY од pyQSOFit пакета, с тим да је QSFit писан у програмском језику IDL који захтева посебну, скупоцену, лиценцу и самим тим отежава његово комбиновање са великим бројем python пакета развијених за потебе астрономске заједнице. Предефинисани сетови модела и линија и тривијалан начин доградње истих издвајају FANTASY у односу на остале пакете. Такође, велика предност FANTASY је то што за моделовање комплексне оптичке и ултраљубичасте емисије Fe користи полуемпиријски модел (Kovačević et al. 2010b; Shapovalova et al. 2012) заснован на атомским прелазима. Међутим, FANTASY недостаје озбиљније разматрање грешака параметара фита, те додатне моетоде процене доприноса зрачења галаксије домаћина, а то представља слабу тачку и за друга два наведена пакета.

AΓJ астрономску заједницу очекује јако узбудљив период са надолазећим великим пројектима као што су: MSE пројекат (енг. Maunakea Spectroscopic Explorer The MSE Science Team et al. 2019), SDSS V - Black Hole Mapper (Kollmeier et al. 2017), 4MOST (de Jong et al. 2019), DESI (Dark Energy Survey Collaboration et al. 2016). Ови пројекти произвешће огроман број спектара AΓJ, тако да је даљи развој FANTASY програмског пакета усмерен ка развоју спектралне анализе из навадених пројеката.

Овде треба истакнути и чињеницу да је FANTASY код отвореног типа те тиме доприноси транспарентности и репродуцибилности научног истраживања. Програмски пакет, заједно са свим процедурама, документацијом, примерима и туторијалом је доступан на званичним страницама¹².

6.2 Могући узроци сопственог Болдвиновог ефекта

Истраживање сопственог Болдвиновог ефекта је својеврсни наставак истраживања започетог у радовима Rakić et al. (2017) и Rakic et al. (2018). Сопствени БЕФ је антикорелација између ЕW линије и континуума који се налази у спектраној близини линије. Иако је

¹www.github.com/yukawa1/fantasy

²https://fantasy-agn.readthedocs.io/en/latest/

спроведено много истраживања физички разлог настанка БЕФ је још увек непознаница (види 2.2). У овој тези истраживали смо сопствени БЕФ на узорку од 8 АГЈ типа 1 преузетих из SDSS-RM пројекта. Метод селекције података дат је у секцији 3.1, њихова обрада у секцији 4.2.3 и напослетку резултати у секцији 5.2.

Наше истраживање је показало да је сопствени БЕФ присутан у свих 8 АГЈ из нашег узорка код Н β широке линије, као и код Н α линије (види табелу 5.1). Средњи нагиб код Н α линије је нешто већи у односу на Н β линију (-0.47 и -0.44 респективно), што није у складу са досадшњим истраживањима која показују да линије за које нам је потребна већа енергија јонизације показују снажнији БЕФ (Espey & Andreadis 1999; Dietrich et al. 2002а). Издвајање широке Н β линије је комплексно с обзиром на то да у том спектралном региону постоји већи број сателицких линија, снажна емисија FeII, што са собом повлачи и теже одузимање континуума. Тако да овај резултат може бити последица, лошијег издвајања профила широке Н β линије и већег расипања подака на графику EW – F_{cnt} .

Наш узорак сачињен је од 7 објеката популације А и један из популације Б. Ако узорку прикљућимо резултате из Rakić et al. (2017) (5 објеката популације Б) можемо да закључимо да сопствени БЕФ не зависи од популације. Rakić et al. (2017) разматрали су промену нагиба сопственог БЕФ са временом, тако што су податке раздвајали на основу максимума емисије у континууму. Са овим узорком то није било могуће с обзиром на мањи број тачака и велики размак између две суседне епохе посматрања.

Оптички континуум можемо схватити као суму оптичког континуума који прати спектралну енергетску расподелу ултраљубичастог јонизационог континуума и фракције додатног (нејонизузујућег) оптичког зрачења у континуум произведеног разним процесима у самом широколинијском региону. Луминозност широких линија зависи од јонизујућег континуума на следећи начин (Goad et al. 2004):

$$L_{\rm line} = A L_{\rm ion}^{\alpha}, \tag{6.1}$$

где је α мера респонзивности (одговора) емисионе линије. Из фотојонизације имамо (Bentz et al. 2006):

$$R_{\rm BLR} \approx L_{\rm cnt}^{0.5},\tag{6.2}$$

и користећи грубу претпоставку да је:

$$L_{\rm line} \approx R_{\rm BLR}^3,$$
 (6.3)

добијамо очекивану вредност з $\alpha = 1.5$. У секцији 5.2 разматрали смо корелације између флукса линије и одговарајућег континуума (види табелу 5.2). У случају Н α линије мерени одговор линије на промену континуума је у опсегу од 0.31 - 0.84, а код Н β 0.42 - 0.67, што значајно одступа од очекиване вредности 1.5. Ово може значити да репроцесирање јонизујућег континуума од стране емисије линије је веома слабо, тако да је део овог континуума претворен у оптички, којег видимо као додатни континуум у оптичком домену. Део оптичког континуума може доћи и из широколинијкског региона у виду слободно-слободних или слпбпдно-везаних прелаза. Ови резултати су у складу са резултатима из Rakić et al. (2017) и Rakic et al. (2018).

Константан однос флуксева Н α и Н β линија са порастом континуума (слика 5.12) указује нам сличан одговор линије на промену континуума, што се такође види из резултата корелација линија са континуумом.

Више аутора (Calvani et al. 2004; Baskin & Laor 2004; Bachev et al. 2004; Marziani et al. 2008; Dong et al. 2009; Bian et al. 2012) разматрало је Едингтонов однос као узрок БЕФ (види секцију 2.2). У овом раду нашли смо корелацију између Едингтоновог односа и нагиба БЕФ (r > 0.9), али само код популације А и за Н α -линију. Ово може да индицира да су Едингтонов однос и БЕФ повезани, међутим велика вредност одговарајуће статистике P те одсуство корелације код Н β линије и код популације Б могу да указују на селекциони ефекат. Ову тврдњу би требало потврдити на већем броју објеката.

На крају, испитвали смо и повезаност сопственог и глобалног Болдвиновог ефекта. Иако постоји снажан сопствени БЕФ у свих 8 објеката из узорка, на слици 5.14 се види благи инверзни глобални БЕФ. Међутим, ако узмемо у обзир досадашње резултате (Dietrich et al. 2002a; Kovačević et al. 2010a; Rakić et al. 2017), који су на већем узорку показали да нема глобалног БЕФ код Балмерових, овај резултат је врло вероватно последица селекционог ефекта.

6.3 Кинематичке особине широколинијског региона

Један од задатака ове тезе јесте пручавање кинематике широколинијског региона. Као питање наметнуло се у којој мери гравитационо поље супермасивне црне рупе утиче на кинематику овог региона, тј. да ли може да се примени теорема виријала приликом одређивања динамичких особина региона (у ком случају кажемо да је гас виријализован). За истраживање смо користили узорак од 946 спектара АГЈ типа 1 из SDSS базе података. Резултати истраживања представљени су у секцији 5.3. Овде ћемо кратко да дискутујемо добијене резултате.

Прво смо разматрали да ли постоји разлика у кинематици региона који емитују Н α Н β линије. Снажна корелација између FWHM за обе линије показује да су кинематике ових региона исте (види слику 5.16). Ово додатно потврђују и изгледи њихових средњих профила (слика 5.21), будући да су оба симетрична и готово идентична. Наши резултати се разликују од оних приказаних у раду Marčeta-Mandić et al. (2020), где су на узорку од 68 АГЈ типа 1 пронашли да се кинематике ова два региона вероватно разликују. Овде морамо да напоменемо да су наши резултати последица аутоматског моделовања обимног броја објеката истим моделом, за разлику од (Marčeta-Mandić et al. 2020) који су пажљиво фитовали објекат по објекат прилагођеним моделом. Ово неслагање оставља отворено питање, које би у будућности требало размотрити пажљивим моделовањем великог броја објеката. Истраживали смо и колико је гас у регионима емисије широке Н α и Н β линије гравитационо везан са супермасивну црну рупу. На нашим подацима урадили смо два теста (види секцију 5.3 и поглавље 2).

Прво смо проверавали односе ширина на различитим нивоима максимумима линије и зависност овог односа од луминозности континуума. (Ророvić et al. 2019) показао је како различити делови широке линије долазе из различитих локација облака гаса који окружују супермасивну црну рупу. Крила линија долазе из облака ближих супермасивној црној рупи, док централни делови линије потичу из удаљенијих. Уколико је гас виријализован природно је очекивати да релација 2.13 важи у свим регионима који доприносе емисионој линији. Ова релација у комбинацији са једначином 2.18 доводи нас до закључка да би односи ширина линија на различитим нивоима максимумима линија требали да буду независни у односу на континуум. На слици 5.18 јасно се види да нема корелације између односа FWQM и FWHM, за обе разматране линије, и луминозности континуума на 5100 Å, што заправо значи да су региони који емитују широке Н α и Н β линије доминатно под утицајем гравитације супермасивне црне рупе, тј. да су виријализовани. Додатна потврда овог закључка јесте одсуство корелације за све комбинације других односа ширина (слика 5.19) и луминозности континуума.

Други тест састојао се од повере зависности ширине на различитим нивоима максимума линије и гравитационог црвеног помака, мереног као асиметрија линије. Слични тестови су рађени код MgII и H β линије у радовима Jonić et al. (2016) и Popović et al. (2019). Слика 5.20 показује да је очекивана корелација јака код ширина мерених у централним деловима линије, али да опада када меримо у крилима линија. Ово нам може указивати на то да региони који доприносе крилима линије нису вријализовани, посебно у случају Н α линије, на пример постоји радијално кретање као што је прилив и отицање гаса (Ророvić et al. 2019). Но овај резултат треба узети с опрезом, јер крила линија су најосетљивија на одузимање континуума, што је у овом раду урађено аутоматски и истовремено са осталим компонентама у току фитовања оптичког спектра (видети секцију 4.2.2).

Поглавље 7

Резиме и закључак

Предмет истраживања ове дисертације су АГЈ типа 1, објекти који у оптичком спектру емитују широке емисионе линије. Ове линије настају из врелог и густог гаса у близни супермасивне црне рупе, јонизованог од стране зрачења из акреционог диска, тзв. широколинијског региона. Циљ рада је испитивање физичких карактеристика овог широколинијског региона, кроз моделовање сложених оптичких спектра, са циљем прецизног мерења и анализе спектралних параметара, за шта је било неопходно развити нови специјализован програмски пакет за моделовање оптичких спекатара АГЈ. Прецизно одређивање параметара спектралних линија, као и разумевање физичких особина емисионих региона, је од великог значаја за разумевање структуре и еволуције АГЈ, и његове улоге у формирању и еволуције галаксија.

У дисертацији су проучавани физички услови, кроз анализе корелација и веза између флукса широких емисионих линија и континуалног зрачења (као што је сопствени Болдвинов ефекат) и кинематика широколонијског региона АГЈ типа 1. Основни алат коришћен за мерење и анализу, је моделовање оптичког дела електормагнетног спектра АГЈ типа 1. Сопствени Болдвинов ефекат се дефинише као антикорелација између еквивалентне ширине широке емисионе линије и флукса конитинуума у близини анализиране емисионе линије. Проучавање овог ефекта доприноси нам да боље разумемо формирање широких емисионих линија и природе региона у којем ове линије настају. Истраживање сопственог Болдвиновог ефекта приказано овде, спровели смо на 8 АГЈ типа 1, које су посматране у току 6 година, у оквиру SDSS-RM пројекта, одакле су преузети подаци и даље детаљно моделирани и анализирани уз помоћ FANTASY програмског пакета. Додатно, у овој дисертацији испитивали смо и кинематичке особине широколинијског региона, односно пре свега да ли је кретање гаса вођено гравитационим дејством супермасивне црне рупе. За потребе овог истраживања креирали смо узорак од 946 АГЈ типа 1 преузетих из SDSS базе података, тачније DR16 каталога.

За реализацију предложеног истраживања, било је потребно моделовати свеукупно преко 1500 комплексних оптичких спектара АГЈ типа 1. За те потребе развијен је потпуно аутоматизован програмски пакет FANTASY, написан у python програмском језику. FANTASY програм моделује спектар АГЈ узимајући истовремено у обзир све унапред задатке спектралне компоненте: континууалну емисију, широке и уске емисионе линије, као и модел Fe II емисије.

Најважнији резултати приказаног истраживања сумирани су у наставку:

- 1. Успешно су моделирани комплексни оптички спектри великог броја АГЈ типа 1 са различитим спектралним карактеристикама добијени инструментима разних техничких карактеристика, користећи програмски пакет FANTASY
- 2. Показано је да је сопствени Болдвинов ефекат присутан код Н α и Н β широких линија

у свим објектима из узорка 8 АГЈ типа 1. Средњи нагиб сопственог Болдвиновог ефекта је нешто већи код Ηα линије у односу на Ηβ широку линију;

- 3. Ово истраживање заједно са истраживањем објављеним у Rakić et al. (2017) указује да сопствени Болдвинов ефекат није повезан са геометријом широколиинијског региона;
- 4. Присуство сопственог Болдвиновог ефекта не зависи од популације, тј. једнако је присутан и у популацији А и популацији Б;
- 5. Одговор (респонзивност) емисије у линији на промене у оптичком континууму је мања од очекиване вредности што указује на потенцијално присуство додатног нејонизирајућег оптичког зрачења у континууму;
- 6. Постоји корелација између Едингтоновг односа, као мере јачине акреције код АГЈ, и нагиба сопственог Болдиновог ефекта за Нα широку линију код популације А објеката, међутим ово није уочено за Нβ линију и објекте популације Б, тако да овај резултат треба узети с опрезом и захтева додатне провере;
- 7. Глобални Болдвинов ефекат није повезан са сопственим Болдвиновим ефектом, што је у складу са претходним истраживањима;
- Кинематика региона који емитују Нα и Нβ широке линије је иста, што показује снажна корелација пуне ширине линија на половини максимума FWHM. Овај закључак је подржан готово индетничним средњим профилима Нα и Нβ широкох линија;
- Однос ширина на пола и на четвртини максималног интензитета линија константне су са порастом луминозности континуума, што указује да је претпоставка виријализаије валидна. Ово је тачно и за све комбинације различитих ширина линија;
- 10. Асиметрије линија у црвеном делу спектралне линије, мерене на различитим интензитетима линија су у корелацији са одговарајућим ширинама линија. Снажнија корелација мерена је на пола и четвртини максимума интензитета линија Нα и Нβ, док код крила линија постоји слаба корелација која указује на потенцијални допринос крилима линије радијалног кретања, као што су приливи или одливи гаса.

Ово истраживање показало је да је сопствени Болдвинов ефекат не зависи од популације објекта и геометрије широколинијског региона. Такође, резултати указују на то да је потенцијално физичко објашњење сопственог Болдвиновог ефекта додатно нејонизујуће зрачење у континууму, које потиче из широколинијског региона. Провера ове тврдње, као и примећене корелације нагиба сопственог Болдвиновог ефекта Н α линије са Едингтоновом луминозношћу, захтева већи узорак објеката са снимљеним оптичким спектром високог квалитета, и биће предмет наших додатних истраживања. Наши резултати испитивања кинематике гаса су у складу са претпоставком да региони гаса који емитују Н α и Н β широку линију виријализовани, тј. да су кинематике овог гаса одређене гравитационим утицајем суермасивне црне рупе.

Истичемо као важан резултат приказане дисертације, развој флексибилног програмског пакета за фитовање пре свега оптичких спектара АГЈ, али са опцијом за моделовање и ултраљубичастог и инфрацрвеног дела спектра. Аутоматизовано истовремено моделовање свих емисионих компоненти у спектру АГЈ омогућава поуздано мерење спектралних параметара. Неке предност развијеног алгоритма су једноставно додавање унапред предефинисаних емисионих компоненти (спискови линија унапред задати, који се једноставно могу мењати, скратити или проширити), као и чињеница да се моделоване компоненте фита сабирају. Додатно је укључена већа подршка за учитавање података, што све укупно значајно олакшава употребу посебно код истраживача у раним фазама каријере.

Једноставна употреба програма даје могућност велике примене у будућој спектралној анализи посматраних АГЈ, посебно за истраживања великог броја АГЈ добијених у оквиру долазећих великих спектроскопских прегледа неба, као што су пројекти MSE и SDSS-V. FANTASY програм је отвореног типа и доступан је широј научној заједници¹²).

На крају, сумирамо планове за будући рад везане за развој програмског пакета FANTASY као и истраживања физчких особина широколинијског региона код АГЈ:

- програмски пакет FANTASY је потребно допунити напредним алгоритмима за одређивање грешака параметара фита базираним на физичким претпоставкама;
- неопходно је допунити пакет и са додатним методама одузимања доприноса галаксије домаћина, што може имати великог значаја за АГЈ мале луминозности где је допринос околне галаксије доминантан;
- због примене FANTASY у другим пројектима, планиран је и развој додатних метода за читање података из других посматрачких мисија;
- примена пакета на велики број података и развој алгоритама за аутоматску детекцију аномалија при моделовању великог броја објеката;
- испитивање зависности нагиба сопственог Болдвиновог ефекта са Едингтоновом луминозношћу на већем узорку објеката са снимљеним оптичким спектром високог квалитета;
- проучавање промене сопственог БЕФ са временом, односно еволуције сопственог БЕФ, за шта је неопходно обезбедити криве сјаја са већим бројем тачака.
- проучавање сопственог БЕФ на већем броју различитих подтипова АГЈ типа 1.

¹www.github.com/yukawa1/fantasy

²https://fantasy-agn.readthedocs.io/en/latest/

Поглавље 8

Научни радови из области истраживања презентованог у дисертацији

- Rakić, N., La Mura, G., Ilić, D., Shapovalova, A. I., Kollatschny, W., Rafanelli, P., & Popović, L. Č. 2017, A&A, 603, A49 (M21, impakt faktor za 2017. godinu 5.565)
- Rakić, N., Popović, L. Č., & Ilić, D., 2018, rnls.conf, 53 [in Proceedings of "Revisiting narrow-line Seyfert 1 galaxies and their place in the Universe" (NLS1-2018). 9-13 April 2018, Padova, Italy] (M33)
- Ilić, D., Oknyansky, V., Popović, L. Č., Tsygankov, S. S., Belinski, A. A., Tatarnikov, A. M., Dodin, A. V., Shatsky, N. I., Ikonnikova, N. P., Rakić, N., Kovačević, A., Marčeta-Mandić, S., Burlak, M. A., Mishin, E. O., Metlova, N. V., Potanin, S. A., & Zheltoukhov, S. G. 2020, A&A, 638, A13 (M21, impakt faktor za 2020. godinu 5.802)
- 4. Rakić, N. 2022, accepted to MNRAS (M21, impakt faktor za 2021. godinu 5.235)
- Petrushevska, T., Leloudas, G., Ilić, D., Bronikowski, M., Charalampopoulos, P., Jaisawal, G.K., Parasekva, E., Pursiainen, M., Rakić, N., Shulze, S., Taggart, K., Wedderkopp, C. K., Anderson, J. P., de Boer, T., Chen, T. W., Damljanović, G., Fraser, M., Gao, H., Gomboc, A., Gromadzki, M., Maguire, K., Marčun, B., Müller-Bravo, T. E., Nicholl, M., Onori, F. Reynolds, T. M., Smartt, S. J., Sollerman, J., Smith, K. W., Wevers, T. & Wyrykowski, L. 2022, submitted to A&A (M21, impakt faktor za 2021. godinu 6.240)

Литература

- Ahumada, R., Prieto, C. A., Almeida, A., et al. 2020, ApJS, 249, 3
- Andrillat, Y. & Souffrin, S. 1968, ApL, 1, 111
- Antonucci, R. 1993, ARA&A, 31, 473
- Antonucci, R. R. J. & Miller, J. S. 1985, ApJ, 297, 621
- Astropy Collaboration, Price-Whelan, A. M., Sipőcz, B. M., et al. 2018, AJ, 156, 123
- Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., et al. 2013, A&A, 558, A33
- Bachev, R., Marziani, P., Sulentic, J. W., et al. 2004, ApJ, 617, 171
- Bahcall, J. N., Kozlovsky, B.-Z., & Salpeter, E. E. 1972, ApJ, 171, 467
- Baldwin, J., Ferland, G., Korista, K., & Verner, D. 1995, ApJ, 455
- Baldwin, J. A. 1977, ApJ, 214, 679
- Barack, L., Cardoso, V., Nissanke, S., et al. 2019, Classical and Quantum Gravity, 36, 143001
- Baskin, A. & Laor, A. 2004, MNRAS, 350, L31
- Bennert, N., Falcke, H., Schulz, H., Wilson, A. S., & Wills, B. J. 2002, ApJ, 574, L105
- Bentz, M. C., Peterson, B. M., Netzer, H., Pogge, R. W., & Vestergaard, M. 2009, ApJ, 697, 160
- Bentz, M. C., Peterson, B. M., Pogge, R. W., Vestergaard, M., & Onken, C. A. 2006, ApJ, 644, 133
- Bian, W.-H., Fang, L.-L., Huang, K.-L., & Wang, J.-M. 2012, MNRAS, 427, 2881
- Blanchard, P. K., Nicholl, M., Berger, E., et al. 2017, ApJ, 843, 106
- Blandford, R. D. & McKee, C. F. 1982, ApJ, 255, 419
- Blumenthal, G. R. & Mathews, W. G. 1975, ApJ, 198, 517
- Bon, E., Popović, L. C., Gavrilović, N., La Mura, G., & Mediavilla, E. 2009, MNRAS, 400, 924
- Bon, N., Bon, E., Marziani, P., & Jovanović, P. 2015, Ap&Sp. Sci, 360, 7
- Boroson, T. A. & Green, R. F. 1992, ApJS, 80, 109
- Brandt, W. N., Ni, Q., Yang, G., et al. 2018, arXiv e-prints, arXiv:1811.06542
- Brotherton, M. S., Wills, B. J., Steidel, C. C., & Sargent, W. L. W. 1994, ApJ, 423, 131

- Burke, D., Laurino, O., wmclaugh, et al. 2022, sherpa/sherpa: Sherpa 4.14.1
- Cackett, E. M., Bentz, M. C., & Kara, E. 2021, iScience, 24, 102557
- Cackett, E. M. & Horne, K. 2006, MNRAS, 365, 1180
- Calderone, G., Nicastro, L., Ghisellini, G., et al. 2017, MNRAS, 472, 4051
- Calvani, M., Marziani, P., Bachev, R., et al. 2004, Memorie della Societa Astronomica Italiana Supplementi, 5, 223
- Carnall, A. 2021, SpectRes: Simple spectral resampling, Astrophysics Source Code Library, record ascl:2104.019
- Carnall, A. C. 2017, arXiv e-prints, arXiv:1705.05165
- Carswell, R. F. & Smith, M. G. 1978, MNRAS, 185, 381
- Chelouche, D., Pozo Nuñez, F., & Kaspi, S. 2019, Nature Astronomy, 3, 251
- Ciddor, P. E. 1996, Applied Optics, 35, 1566
- Collin, S., Kawaguchi, T., Peterson, B. M., & Vestergaard, M. 2006, A&A, 456, 75
- Corbin, M. R. 1995, ApJ, 447, 496
- Croom, S. M., Rhook, K., Corbett, E. A., et al. 2002, MNRAS, 337, 275
- Dalla Bontà, E., Peterson, B. M., Bentz, M. C., et al. 2020, ApJ, 903, 112
- Dark Energy Survey Collaboration, Abbott, T., Abdalla, F. B., et al. 2016, MNRAS, 460, 1270
- De Cicco, D., Bauer, F. E., Paolillo, M., et al. 2022, arXiv e-prints, arXiv:2205.12275
- de Jong, R. S., Agertz, O., Berbel, A. A., et al. 2019, The Messenger, 175, 3
- de Jong, R. S., Bellido-Tirado, O., Chiappini, C., et al. 2012, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8446, Ground-based and Airborne Instrumentation for Astronomy IV, ed. I. S. McLean, S. K. Ramsay, & H. Takami, 84460T
- Dexter, J. & Agol, E. 2011, , 727, L24
- Dibai, E. A. 1977, Soviet Astronomy Letters, 3, 1
- Dietrich, M., Appenzeller, I., Vestergaard, M., & Wagner, S. J. 2002a, ApJ, 564, 581
- Dietrich, M., Hamann, F., Shields, J. C., et al. 2002b, ApJ, 581, 912
- Dimitrijević, M. S., Popović, L. Č., Kovačević, J., Dačić, M., & Ilić, D. 2007, MNRAS, 374, 1181
- Dojčinović, I., Kovačević-Dojčinović, J., & Popović, L. Č. 2022, arXiv e-prints, arXiv:2204.10036
- Dong, X., Wang, J., Wang, T., et al. 2009, in Astronomical Society of the Pacific Conference Series, Vol. 408, The Starburst-AGN Connection, ed. W. Wang, Z. Yang, Z. Luo, & Z. Chen, 83
- Dong, X.-B., Wang, J.-G., Ho, L. C., et al. 2011, ApJ, 736, 86

Edelson, R., Gelbord, J., Cackett, E., et al. 2019, ApJ, 870, 123

- Elitzur, M. 2006, NewAR, 50, 728
- Eracleous, M. & Halpern, J. P. 1994, ApJS, 90, 1
- Eracleous, M. & Halpern, J. P. 2003, ApJ, 599, 886
- Espey, B. & Andreadis, S. 1999, in Astronomical Society of the Pacific Conference Series, Vol. 162, Quasars and Cosmology, ed. G. Ferland & J. Baldwin, 351
- Fath, E. A. 1909, Lick Observatory Bulletin, 149, 71
- Fausnaugh, M. M., Denney, K. D., Barth, A. J., et al. 2016, ApJ, 821, 56
- Fitzpatrick, E. L. 1999, PASP, 111, 63
- Gaskell, C. M. 2009, NewAR, 53, 140
- Gaskell, C. M. 2011, in SF2A-2011: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics, ed. G. Alecian, K. Belkacem, R. Samadi, & D. Valls-Gabaud, 577–582
- Genzel, R., Eisenhauer, F., & Gillessen, S. 2010, Rev. Mod. Phys., 82, 3121
- Gezari, S. 2021, ARA&A, 59 [[arXiv]2104.14580]
- Gilbert, K. M. & Peterson, B. M. 2003, ApJ, 587, 123
- Goad, M. R., Korista, K. T., & Knigge, C. 2004, MNRAS, 352, 277
- Gordon, Y. A., Owers, M. S., Pimbblet, K. A., et al. 2017, MNRAS, 465, 2671
- Gordon, Y. A., Pimbblet, K. A., Owers, M. S., et al. 2018, MNRAS, 475, 4223
- Graham, M. J., Ross, N. P., Stern, D., et al. 2020, MNRAS, 491, 4925
- Grandi, S. A. 1982, ApJ, 255, 25
- Gravity Collaboration, Abuter, R., Amorim, A., et al. 2019, A&A, 625, L10
- Green, P. J. 1996, ApJ, 467, 61
- Green, P. J. 1998, ApJ, 498, 170
- Green, P. J., Forster, K., & Kuraszkiewicz, J. 2001, ApJ, 556, 727
- Greene, J. E. & Ho, L. C. 2005, ApJ, 630, 122
- Gunn, J. E., Siegmund, W. A., Mannery, E. J., et al. 2006, AJ, 131, 2332
- Guo, H., Shen, Y., & Wang, S. 2018, PyQSOFit: Python code to fit the spectrum of quasars, Astrophysics Source Code Library
- Hall, P. B., Sarrouh, G. T., & Horne, K. 2018, ApJ, 854, 93
- Harris, C. R., Millman, K. J., van der Walt, S. J., et al. 2020, Nature, 585, 357
- Harrison, C. 2014, PhD thesis, Durham University, UK

- Heckman, T. M., Miley, G. K., van Breugel, W. J. M., & Butcher, H. R. 1980, in Bulletin of the American Astronomical Society, Vol. 12, 809
- Ho, L. C., Filippenko, A. V., & Sargent, W. L. W. 1997a, ApJS, 112, 315
- Ho, L. C., Filippenko, A. V., Sargent, W. L. W., & Peng, C. Y. 1997b, ApJS, 112, 391
- Ilić, D., Oknyansky, V., Popović, L. C., et al. 2020, A&A, 638, A13
- Ilić, D., Popović, L. C., La Mura, G., Ciroi, S., & Rafanelli, P. 2012, A&A, 543, A142
- Ilić, D., Shapovalova, A. I., Popović, L. Č., et al. 2017, Frontiers in Astronomy and Space Sciences, 4, 12
- Ivezić, Ż., Kahn, S. M., Tyson, J. A., et al. 2019, ApJ, 873, 111
- Jankov, I. & Ilić, D. 2020, Contributions of the Astronomical Observatory Skalnate Pleso, 50, 350
- Jiang, P., Wang, J. X., & Wang, T. G. 2006, ApJ, 644, 725
- Jiang, P., Wang, J. X., & Wang, T. G. 2007, in Astronomical Society of the Pacific Conference Series, Vol. 373, The Central Engine of Active Galactic Nuclei, ed. L. C. Ho & J. W. Wang, 143
- Jones, B. J. T. & Jones, J. E. 1980, MNRAS, 193, 537
- Jonić, S., Kovačević-Dojčinović, J., Ilić, D., & Popović, L. Č. 2016, Ap&Sp. Sci, 361, 101
- Jovanović, P. 2012, NewAR, 56, 37
- Jovanović, P. & Popović, L. C. 2009, arXiv e-prints, arXiv:0903.0978
- Kaspi, S., Smith, P. S., Netzer, H., et al. 2000, ApJ, 533, 631
- Kelly, B. C., Bechtold, J., & Siemiginowska, A. 2009, ApJ, 698, 895
- Kerr, R. P. 1963, Phys. Rev. Lett., 11, 237
- Kinney, A. L., Rivolo, A. R., & Koratkar, A. P. 1990, ApJ, 357, 338
- Kollatschny, W. 2003, A&A, 412, L61
- Kollatschny, W. & Fricke, K. J. 1985, A&A, 146, L11
- Kollatschny, W. & Zetzl, M. 2011, Nature, 470, 366
- Kollmeier, J. A., Zasowski, G., Rix, H.-W., et al. 2017, arXiv e-prints, arXiv:1711.03234
- Kong, M. Z., Wu, X. B., Wang, R., Liu, F. K., & Han, J. L. 2006, A&A, 456, 473
- Korista, K. 1999, in Astronomical Society of the Pacific Conference Series, Vol. 162, Quasars and Cosmology, ed. G. Ferland & J. Baldwin, 429
- Korista, K., Baldwin, J., & Ferland, G. 1998, ApJ, 507, 24
- Korista, K. T. & Goad, M. R. 2001, ApJ, 553, 695
- Korista, K. T. & Goad, M. R. 2019, MNRAS, 489, 5284

Kormendy, J. & Ho, L. C. 2013, ARA&A, 51, 511

- Kovačević, A., Popović, L. C., Shapovalova, A. I., et al. 2015, Journal of Astrophysics and Astronomy, 36, 475
- Kovačević, A., Zeković, V., Ilić, D., et al. 2022, Publications of the Astronomical Society "Rudjer Boskovic", 22, 231
- Kovačević, J. 2011, PhD thesis, University of Belgrade, Serbia
- Kovačević, J., Popović, L. Č., & Dimitrijević, M. S. 2010a, ApJS, 189, 15
- Kovačević, J., Popović, L. C., & Dimitrijević, M. S. 2010b, ApJS, 189, 15
- Kovačević-Dojčinović, J., Dojčinović, I., Lakićević, M., & Popović, L. Č. 2022, A&A, 659, A130
- Kovačević-Dojčinović, J. & Popović, L. Č. 2015, ApJS, 221, 35
- Krolik, J. H. 1999, Active galactic nuclei : from the central black hole to the galactic environment (Princeton University Press)
- La Mura, G., Popović, L. C., Ciroi, S., Rafanelli, P., & Ilić, D. 2007, ApJ, 671, 104
- Laor, A. 2006, ApJ, 643, 112
- Lawther, D., Goad, M. R., Korista, K. T., Ulrich, O., & Vestergaard, M. 2018, MNRAS, 481, 533
- León-Tavares, J., Chavushyan, V., Patiño-Álvarez, V., et al. 2013, , 763, L36
- Levenberg, K. 1944, Quart. Appl. Math., 2, 164
- Liu, H. T., Feng, H. C., & Bai, J. M. 2017, MNRAS, 466, 3323
- Liu, H. T., Feng, H.-C., Li, S.-S., & Bai, J. M. 2022, ApJ, 928, 60
- Liu, H.-Y., Liu, W.-J., Dong, X.-B., et al. 2019, ApJS, 243, 21
- Lobanov, A. 2007, arXiv e-prints, arXiv:0708.4280
- Lyke, B. W., Higley, A. N., McLane, J. N., et al. 2020, ApJS, 250, 8
- Lynden-Bell, D. 1969, Nature, 223, 690
- Lyutyi, V. M. 1972, , 49, 930
- Lyutyi, V. M. & Cherepashchuk, A. M. 1972, Astronomicheskij Tsirkulyar, 688, 1
- Marquardt, D. W. 1963, SIAM J. Appl. Math., 11, 431
- Marčeta-Mandić, S., Kovačević-Dojčinović, J., & Popović, L. Č. 2020, Publ. Astron. Obs. Belgrade, 299
- Marziani, P., del Olmo, A., Martínez-Carballo, M. A., et al. 2019, A&A, 627, A88
- Marziani, P., del Olmo, A., Negrete, C. A., et al. 2022, arXiv e-prints, arXiv:2205.07034

- Marziani, P., Dultzin, D., & Sulentic, J. W. 2008, in Revista Mexicana de Astronomia y Astrofisica Conference Series, Vol. 32, Revista Mexicana de Astronomia y Astrofisica Conference Series, 103–103
- Marziani, P., Dultzin, D., Sulentic, J. W., et al. 2018, Frontiers in Astronomy and Space Sciences, 5, 6
- Marziani, P. & Sulentic, J. W. 2014, MNRAS, 442, 1211
- Marziani, P., Sulentic, J. W., Zwitter, T., Dultzin-Hacyan, D., & Calvani, M. 2001, ApJ, 558, 553
- Mediavilla, E., Jiménez-Vicente, J., Fian, C., et al. 2018, ApJ, 862, 104
- Moré, J. J. 1978, in Numerical Analysis, ed. G. A. Watson (Berlin, Heidelberg: Springer Berlin Heidelberg), 105–116
- Mummery, A. & Balbus, S. A. 2020, MNRAS, 492, 5655
- Mushotzky, R. & Ferland, G. J. 1984, ApJ, 278, 558
- Netzer, H. 1977, MNRAS, 181, 89
- Netzer, H. 1985, MNRAS, 216, 63
- Netzer, H. 2013, The Physics and Evolution of Active Galactic Nuclei
- Netzer, H. 2015, ARA&A, 53, 365
- Netzer, H. 2020, MNRAS, 494, 1611
- Netzer, H., Laor, A., & Gondhalekar, P. M. 1992, MNRAS, 254, 15
- Osmer, P. S. & Shields, J. C. 1999, in Astronomical Society of the Pacific Conference Series, Vol. 162, Quasars and Cosmology, ed. G. Ferland & J. Baldwin, 235
- Osterbrock, D. E. & Ferland, G. J. 2006, Astrophysics of gaseous nebulae and active galactic nuclei (University Science Books)
- Osterbrock, D. E. & Pogge, R. W. 1985, ApJ, 297, 166
- Padovani, P., Alexander, D. M., Assef, R. J., et al. 2017, , 25, 2
- Page, K. & et al. 2004, in Evidence for Tori and Winds in AGN, 25
- Panda, S. 2021, in XIX Serbian Astronomical Conference, Vol. 100, 333–338
- Park, D., Barth, A. J., Ho, L. C., & Laor, A. 2022, ApJS, 258, 38
- Peacock, J. A. 1999, Cosmological Physics
- Peterson, B. M. 1993, PASP, 105, 247
- Peterson, B. M. 2008, NewAR, 52, 240
- Peterson, B. M. 2014, SSRv, 183, 253
- Peterson, B. M., Ferrarese, L., Gilbert, K. M., et al. 2004, ApJ, 613, 682

- Peterson, B. M. & Horne, K. 2004, Astronomische Nachrichten, 325, 248
- Peterson, B. M. & Wandel, A. 1999, ApJ, 521, L95
- Phillips, M. M. 1978, ApJS, 38, 187
- Pogge, R. W. 2000, NewAR, 44, 381
- Pogge, R. W. & Peterson, B. M. 1992, AJ, 103, 1084
- Popović, L. C. 2003, ApJ, 599, 140
- Popović, L. C. 2006, ApJ, 650, 1217
- Popović, L. Č. 2020, Open Astronomy, 29, 1
- Popović, L. C. & Ilić, D. 2017, Aktivna galaktička jezgra (Matematički fakultet Beograd)
- Popović, L. C., Jovanović, P., Mediavilla, E., et al. 2006, ApJ, 637, 620
- Popović, L. C. & Kovačević, J. 2011, ApJ, 738, 68
- Popović, L. C., Kovačević-Dojčinović, J., & Marčeta-Mandić, S. 2019, MNRAS, 484, 3180
- Popović, L. C., Mediavilla, E., Bon, E., & Ilić, D. 2004, A&A, 423, 909
- Popović, L. Č., Stanić, N., Kubičela, A., & Bon, E. 2001, Astronomical and Astrophysical Transactions, 20, 319
- Punsly, B., Marziani, P., Berton, M., & Kharb, P. 2020, ApJ, 903, 44
- Rakić, N. 2022, accepted to MNRAS
- Rakic, N., Ilic, D., & Popovic, L. 2018, in Revisiting Narrow-Line Seyfert 1 Galaxies and their Place in the Universe, 53
- Rakić, N., La Mura, G., Ilić, D., et al. 2017, A&A, 603, A49
- Rakshit, S., Stalin, C. S., & Kotilainen, J. 2020, ApJS, 249, 17
- Ricci, C., Paltani, S., Awaki, H., et al. 2013, A&A, 553, A29
- Richards, G. T., Lacy, M., Storrie-Lombardi, L. J., et al. 2006, ApJS, 166, 470
- Salpeter, E. E. 1964, ApJ, 140, 796
- Salviander, S., Shields, G. A., Gebhardt, K., & Bonning, E. W. 2007, ApJ, 662, 131
- Sarajedini, V. L., Gilliland, R. L., & Phillips, M. M. 2000, AJ, 120, 2825
- Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525
- Schmidt, M. 1963, Nature, 197, 1040
- Schwarzschild, K. 1916, Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin), 189
- Seyfert, C. K. 1943, ApJ, 97, 28

- Shakura, N. I. & Sunyaev, R. A. 1973, A&A, 24, 337
- Shang, Z., Wills, B. J., Robinson, E. L., et al. 2003, ApJ, 586, 52
- Shapovalova, A. I., Popović, , L. C., et al. 2019, MNRAS, 485, 4790
- Shapovalova, A. I., Popović, L. Č., Burenkov, A. N., et al. 2010, A&A, 517, A42
- Shapovalova, A. I., Popović, L. Č., Burenkov, A. N., et al. 2013, A&A, 559, A10
- Shapovalova, A. I., Popović, L. C., Burenkov, A. N., et al. 2012, ApJS, 202, 10
- Shapovalova, A. I., Popović, L. C., Chavushyan, V. H., et al. 2016, ApJS, 222, 25
- Shapovalova, A. I., Popović, L. Č., Collin, S., et al. 2008, A&A, 486, 99
- Shemmer, O. & Lieber, S. 2015, ApJ, 805, 124
- Shen, Y., Anderson, S., Berger, E., et al. 2019a, 51, 274
- Shen, Y., Brandt, W. N., Dawson, K. S., et al. 2015, ApJS, 216, 4
- Shen, Y., Hall, P. B., Horne, K., et al. 2019b, ApJS, 241, 34
- Shen, Y., Richards, G. T., Strauss, M. A., et al. 2011, ApJS, 194, 45
- Shields, J. C. 2007, in Astronomical Society of the Pacific Conference Series, Vol. 373, The Central Engine of Active Galactic Nuclei, ed. L. C. Ho & J. W. Wang, 355
- Shu, X. W., Wang, J. X., Yaqoob, T., Jiang, P., & Zhou, Y. Y. 2012, 744, L21
- Smartt, S. J., Valenti, S., Fraser, M., et al. 2015, A&A, 579, A40
- Stalevski, M., Fritz, J., Baes, M., Nakos, T., & Popović, L. C. 2012, MNRAS, 420, 2756
- Strateva, I. V., Strauss, M. A., Hao, L., et al. 2003, AJ, 126, 1720
- Sulentic, J. W., Marziani, P., & Dultzin-Hacyan, D. 2000a, ARA&A, 38, 521
- Sulentic, J. W., Marziani, P., & Dultzin-Hacyan, D. 2000b, ARA&A, 38, 521
- The MSE Science Team, Babusiaux, C., Bergemann, M., et al. 2019, arXiv e-prints, arXiv:1904.04907
- Tohline, J. E. & Osterbrock, D. E. 1976, , 210, L117
- Tsuzuki, Y., Kawara, K., Yoshii, Y., et al. 2006, ApJ, 650, 57
- Ulrich, M.-H., Maraschi, L., & Urry, C. M. 1997, Annual Review of Astronomy and Astrophysics, 35, 445
- Urry, C. M. & Padovani, P. 1995, PASP, 107, 803
- Vanden Berk, D. E., Richards, G. T., Bauer, A., et al. 2001, AJ, 122, 549
- Vanden Berk, D. E., Shen, J., Yip, C.-W., et al. 2006, AJ, 131, 84
- Véron-Cetty, M. P., Joly, M., & Véron, P. 2004, A&A, 417, 515

- Vestergaard, M. & Wilkes, B. J. 2001, ApJS, 134, 1
- Vietri, G., Mainieri, V., Kakkad, D., et al. 2020, A&A, 644, A175
- Wamsteker, W. & Colina, L. 1986, ApJ, 311, 617
- Wang, Y., Shang, Z., & Brotherton, M. S. 2022, MNRAS, 514, 1595
- Warner, C., Hamann, F., & Dietrich, M. 2003, ApJ, 596, 72
- Wills, B. J. & Browne, I. W. A. 1986, ApJ, 302, 56
- Xu, Y., Bian, W.-H., Yuan, Q.-R., & Huang, K.-L. 2008, MNRAS, 389, 1703
- Yip, C. W., Connolly, A. J., Szalay, A. S., et al. 2004a, AJ, 128, 585
- Yip, C. W., Connolly, A. J., Vanden Berk, D. E., et al. 2004b, AJ, 128, 2603
- Zamfir, S., Sulentic, J. W., Marziani, P., & Dultzin, D. 2010, MNRAS, 403, 1759
- Zamorani, G., Marano, B., Mignoli, M., Zitelli, V., & Boyle, B. J. 1992, MNRAS, 256, 238
- Zhao, G., Zhao, Y.-H., Chu, Y.-Q., Jing, Y.-P., & Deng, L.-C. 2012, Research in Astronomy and Astrophysics, 12, 723
- Zheng, W., Fang, L.-Z., & Binette, L. 1992, ApJ, 392, 74
- Zheng, W. & Malkan, M. A. 1993, ApJ, 415, 517
- Zheng, W. & Sulentic, J. W. 1990, ApJ, 350, 512

Додатак А

Пратеће табеле и графици за сопствени Болдвинов ефекат

У овом додатку прилажемо мерења сопственог Болдвиновог ефекта за преосталих 5 АГЈ типа 1, за које су оптички спектри сакупљени током 6 година путем SDSS-RM пројекта. За сваки објекат приказани су пример више-компонентног фита у опсегу таласних дужина 4000-7000 Å одговарајућа крива сјаја за флуксеве широких емисионих линија и континуума, сопствени Болдвинов ефекат за Н β и Н α линије, као и корелације између флукса линије и одговарајућег континуума.

У табели A.1 дајемо измерене параметре из спектара свих 8 AГJ типа 1 током периода од 6 година, коришћене за истраживање сопственог Болдвиновог ефекта.

Rmid	fiber	MJD	plate	F_{5100}	δF_{5100}	F_{6200}	δF_{6200}	$F(\mathrm{H}\beta)$	$\delta F(\mathrm{H}\beta)$	$F(\mathrm{H}\alpha)$	$\delta F(\mathrm{H}\alpha)$
101	641	56455	7029	7.42	0.26	6.21	0.36	592	24	1335	32
101	684	56660	7338	6.72	0.35	6.05	0.62	607	33	1458	51
101	642	56664	7338	6.42	0.21	5.63	0.33	563	19	1330	27
101	691	56683	7339	6.14	0.26	4.96	0.28	529	25	1192	21
101	691	56686	7339	6.52	0.19	5.36	0.31	544	18	1259	25
101	681	56697	7339	6.71	0.17	5.76	0.49	581	16	1400	41
101	681	56715	7339	6.94	0.25	5.79	0.59	567	23	1453	51
101	688	56717	7338	6.73	0.21	5.6	0.27	553	19	1327	23
101	719	56720	7339	7.04	0.31	5.89	0.37	591	30	1385	32
101	717	56722	7339	6.61	0.14	5.61	0.23	526	13	1261	19
101	706	56726	7340	6.99	0.19	6.48	0.46	546	16	1385	39
101	691	56739	7339	6.46	0.23	5.45	0.2	544	21	1277	17
101	708	56745	7338	6.98	0.24	6.0	0.34	570	22	1379	29
101	689	56747	7339	6.41	0.25	5.6	0.34	516	23	1321	28
101	689	56749	7339	6.42	0.26	5.49	0.27	525	23	1329	23

Табела А.1 – наставак са претходне странице

Rmid	fiber	MJD	plate	F_{5100}	δF_{5100}	F_{6200}	δF_{6200}	$F(\mathrm{H}\beta)$	$\delta F(\mathrm{H}\beta)$	$F(\mathrm{H}\alpha)$	$\delta F(\mathrm{H}\alpha)$
101	713	56751	7339	6.82	0.25	5.86	0.41	568	22	1380	35
101	713	56755	7339	6.8	0.27	5.86	0.43	542	24	1377	37
101	713	56768	7339	6.9	0.24	5.73	0.39	566	22	1424	33
101	731	56772	7339	6.83	0.16	5.71	0.36	539	15	1291	30
101	683	56780	7339	7.58	0.18	6.16	0.47	591	16	1476	40
101	689	56782	7339	7.38	0.19	6.3	0.27	590	17	1398	23
101	689	56783	7339	7.5	0.16	6.27	0.28	563	14	1388	24
101	689	56795	7339	7.53	0.26	6.04	0.41	610	23	1431	35
101	689	56799	7339	7.46	0.2	6.17	0.36	563	18	1393	30
101	681	56804	7339	7.35	0.21	6.05	0.46	617	20	1379	39
101	689	56808	7339	7.44	0.25	6.25	0.29	577	23	1415	24
101	689	56813	7339	7.43	0.22	6.48	0.29	588	20	1445	24
101	682	56825	7340	6.76	0.17	5.7	0.4	557	16	1271	32
101	682	56829	7340	6.68	0.29	5.35	0.58	540	27	1213	47
101	682	56833	7340	6.62	0.24	5.41	0.4	531	22	1288	34
101	682	56837	7340	6.61	0.22	5.54	0.41	565	21	1334	35
101	686	57038	7338	7.38	0.34	5.94	0.35	562	$\frac{-}{32}$	1245	29
101	686	57050	7338	7.82	0.31	6.11	0.53	555	27	1333	47
101	686	57067	7338	6.59	0.35	4.81	0.62	510	31	1082	50
101	687	57082	7339	7 91	0.26	6 79	0.32	609	24	1475	28
101	688	57106	7340	7.54	0.39	62	0.59	571	35	1373	$\frac{1}{50}$
101	688	57127	7338	73	0.23	5 28	0.48	531	20	1218	41
101	688	57135	7338	6.87	0.19	5.20 5.29	$0.10 \\ 0.32$	531	28 17	11210	26
101	690	57159	7338	7.07	0.34	5.20 5.77	0.37	598	31	1303	2 0 31
101	690	57166	7338	6.91	0.31 0.29	5.81	0.31 0.42	601	26	1321	34
101	688	57185	7340	72	0.27	6.03	0.56	618	$\frac{20}{25}$	1407	47
101	688	57196	7340	7 33	0.32	6.23	0.35	606	29	1379	29
101	691	57428	7339	8 14	0.3	6.73	0.23	652	$\frac{2}{27}$	1486	-s 18
101	691	57435	7339	8 27	0.33	6.89	0.20	691	31	1482	26
101	691	57451	7339	7.58	0.28	6.00	0.32	653	23	1458	$\frac{26}{25}$
101	685	57463	7339	7.03	0.31	5.75	0.33	615	$\frac{20}{27}$	1357	29 19
101	689	57481	7339	$7.00 \\ 7.37$	0.31	6.55	0.21 0.53	631	30	1504	43
101	691	57492	7339	7.01	0.00	6.51	0.55	630	19	1501	41
101	691	57510	7339	7.11 7.66	0.22 0.22	6.63	0.01 0.35	631	10	1406	23
101	689	57518	7339	6.95	0.22 0.22	5.85	0.38	586	18	1377	20 31
101	691	57544	7339	7.89	0.22 0.24	6.71	$0.50 \\ 0.54$	615	20	1458	43
101	686	57570	7340	7.05	0.21	6 13	0.32	568	20 13	1307	15 25
101	686	57576	7340	7.55	$\begin{array}{c} 0.10 \\ 0.20 \end{array}$	6.10	0.32	636	$\frac{15}{25}$	1406	20 31
101	684	57781	7338	6.82	0.29 0.28	6 11	0.00	619	20 23	1/30	01 93
101	686	57780	7338	6.84	0.20	5.96	0.23	634	$\frac{20}{25}$	1405 1/1/7	$\frac{20}{37}$
101	686	57805	7338	6.83	0.20 0.25	5.81	0.40	596	$\frac{20}{21}$	1/21	30
101	686	57817	7338	6.60	0.20 0.34	5.80	0.45	606 606	21	1465	30
101	688	57839	7338	5.09 5.77	0.04	0.09 1 06	0.4	511	⊿o 22	1151	52 16
101	688	57812	7220	5.02	0.20	4.90 5 21	0.24 0.4	511	22 96	1962	10 21
101	688	57850	7228	0.90 6 94	0.51	5.51 5.5	0.4	558	20 99	1200 1252	30 91
101	688	57874	7220	0.24 6 51	0.20	5.5 5.0	0.09 0.99	550 569	ムム 91	1370 1370	02 00
101	605	57809	7330	0.91 6 55	0.20 0.97	5.66 5.66	0.20	555	⊿⊥ 00	1379 1371	22 37
101	605 605	57001	7220	0.00 A A	0.21	5.00	0.42	555	22 20	1491	3U 34
TOT	030	01301	1008	0.0	0.00	J.13	0.00	000	${\scriptstyle {\scriptstyle {\scriptstyle \Delta}}} {\it {\scriptstyle {\scriptstyle {\scriptstyle {\scriptstyle J}}}}}$	1441	50

Табела А.1 – наставак са претходне странице

Rmid	fiber	MJD	plate	F_{5100}	δF_{5100}	F_{6200}	δF_{6200}	$F(\mathrm{H}\beta)$	$\delta F(\mathrm{H}\beta)$	$F(\mathrm{H}\alpha)$	$\delta F(\mathrm{H}\alpha)$
101	695	57918	7339	6.34	0.41	5.59	0.36	587	36	1435	30
101	695	57934	7339	6.58	0.34	5.59	0.26	551	30	1365	21
101	684	58127	7338	7.56	0.21	6.12	0.28	546	18	1296	23
101	684	58174	7338	7.23	0.31	5.99	0.38	594	27	1342	29
101	684	58216	7340	7.44	0.27	6.03	0.5	563	24	1397	40
101	690	58230	7340	7.51	0.26	6.13	0.49	569	23	1334	37
101	686	58258	7340	7.38	0.27	6.04	0.21	554	25	1323	17
101	694	58289	7340	8.18	0.21	6.81	0.41	586	20	1463	33
101	685	58561	7339	8.95	0.25	7.32	0.17	614	22	1475	13
101	685	58587	7339	9.06	0.26	7.4	0.31	640	22	1566	25
101	688	58627	7340	9.1	0.25	8.0	0.37	691	22	1660	29
101	688	58657	7340	8.72	0.22	7.69	0.29	674	18	1680	23
101	686	58867	7338	8.57	0.33	7.08	0.28	635	29	1489	22
101	699	58895	7339	7.89	0.24	6.72	0.32	613	21	1417	25
126	984	56393	6739	6.09	0.84	4.23	0.24	198	65	448	11
126	757	56449	7028	5.82	0.58	5.49	0.47	212	49	576	23
126	727	56660	7338	6.34	0.38	5.83	0.18	223	34	591	8
126	681	56664	7338	7.29	0.4	6.34	0.35	251	34	616	17
126	724	56683	7339	6.75	0.33	6.1	0.22	210	26	613	10
126	722	56686	7339	6.94	0.32	6 22	0.26	204	23	646	13
126	728	56697	7339	6.04	0.34	5.16	0.35	211	$\frac{28}{28}$	579	17
126	728	56715	7339	6.0	0.34	5.2	0.24	192	- ° 24	585	11
120 126	731	56717	7338	6.12	0.31	5.2	0.21 0.22	236	29	583	11
126	724	56720	7339	6 29	0.32	5.36	0.28	239	28 28	583	13
126	727	56726	7340	6.57	0.25	55	0.15	232	$\frac{20}{20}$	591	7
126	734	56739	7339	5.01	0.26	4 98	0.10 0.24	202	20 21	541	12
126	723	56745	7338	6.38	0.20 0.32	5.45	0.21	187	21	569	9
126	722	56747	7339	6.82	0.38	$5.10 \\ 5.92$	0.10	274	20 39	588	20
126	722	56749	7339	6.02	0.30	5.92	0.1	173	25	598	<u>2</u> 0 0
120	724	56751	7339	6.74	0.41 0.45	5.81	0.15	226	20 41	577	13
126	724	56755	7339	6.47	0.10	5.81	0.20 0.42	192	23	575	10 91
120	724 724	56768	7339	6.44	0.00	5.01 5.61	0.42	$\frac{152}{237}$	20 34	591	0
120	778	56772	7330	6.42	0.4	5.01	0.15	201	39 39	600	11
$120 \\ 126$	799	56782	7330	6.94 6.04	0.50	5.52 5.14	0.20	175	52 91	585	15
120	722	56783	7330	65	0.04	5.19	0.02	234	21 20	589	10
$120 \\ 126$	722	56795	7330	6.77	0.00	5 55	0.20 0.22	$\frac{254}{257}$	2 <i>5</i> 38	583	14
120	722	56700	7330	6 50	$\begin{array}{c} 0.4 \\ 0.92 \end{array}$	$5.00 \\ 5.67$	0.22 0.23	201	15	581	10
120	724	56804	7330	6.59	0.22 0.43	5.78	0.25	209	$\frac{10}{37}$	501	11 19
120	724	56808	7330	6.85	0.40	5.63	0.20	200	30	550	12
120	726	56813	7330	0.85 6.61	0.30 0.41	5.05	0.25 0.25	259 251	30 30	573	10
120	720	56825	7340	6 9	0.41	5.50	0.20	$\frac{201}{178}$	03 94	567	12
120	729	56820	7340	0.2	0.30	5.09	0.00	258	24 41	507	10
120 196	129 790	56833	7340 7340	0.74 6 0	0.42	5.00 5.76	0.32	200 214	41 99	പടാ നോ	10 19
120 196	129 790	56097	7040 7940	0.9 6 0 1	0.00	5.10 5.00	0.27	214 057	22 20	002 609	10 10
120 196	(29 791	520301 57030	7990	0.01 6.94	0.04	0.0Z 1.79	0.24	207 997	ე⊖ აა	00Z 579	12 02
120 196	121 795	07038 57050	1008 7000	0.24 6.20	0.39	4.18 5.44	0.47	201 050	აა იი	013 649	20 20
120 196	イZD 79月	57030 57067	1008 7990	0.00 ちょう	0.34	0.44 4 71	0.4	208 200	20 20	043 601	20 19
120	120 700	97007 E7099	1338 7220	0.03 6.67	0.4	4.11	0.28	209	う <u>ノ</u> 25	001	10 10
120	(ZZ)	97082	7339	0.07	0.44	0.88	0.30	ZZ (30	000	19
fiber MJD $F(H\beta)$ $\delta F(\mathrm{H}\beta)$ $F(H\alpha)$ F_{5100} δF_{5100} δF_{6200} $\delta F(\mathrm{H}\alpha)$ Rmid plate F_{6200} 6.490.39 0.24 6.110.336.180.575.320.226.180.455.116.710.565.30.416.560.495.380.45.890.364.790.30.216.070.435.015.990.420.224.925.750.374.820.180.64.670.195.735.470.544.550.246.190.344.860.395.530.45.040.165.750.365.340.430.236.530.375.336.32 0.364.890.460.525.424.790.45.250.34.650.255.810.324.760.250.355.670.454.785.470.484.590.410.195.530.294.725.610.424.70.30.360.336.15.095.40.40.34.420.55.924.990.296.06 0.395.20.310.314.880.35.435.760.565.310.350.364.660.335.585.470.354.160.26.37 0.435.490.266.210.415.690.280.35.925.150.327.150.56.40.446.440.325.870.36 0.390.215.734.675.730.355.010.166.550.39 5.890.22 6.640.426.150.486.330.444.910.245.430.284.090.3613.90.3911.840.2512.880.411.160.3715.250.2812.630.3916.96 0.3214.690.4414.780.3813.280.230.3713.250.215.49

Табела А.1 – наставак са претходне странице

Табела А.1 – наставак са претходне странице

Rmid	fiber	MJD	plate	F_{5100}	δF_{5100}	F_{6200}	δF_{6200}	$F(\mathrm{H}\beta)$	$\delta F(\mathrm{H}\beta)$	$F(\mathrm{H}\alpha)$	$\delta F(\mathrm{H}\alpha)$
184	810	56697	7339	14.17	0.34	12.12	0.24	720	24	1521	15
184	810	56715	7339	14.72	0.28	12.8	0.24	670	19	1515	15
184	804	56717	7338	14.7	0.29	13.72	0.21	679	20	1627	13
184	824	56720	7339	9.58	0.27	8.44	0.21	450	19	930	12
184	826	56722	7339	14.09	0.26	12.37	0.21	623	18	1422	13
184	825	56726	7340	14.67	0.34	12.49	0.25	703	24	1456	15
184	802	56739	7339	13.48	0.29	11.27	0.27	618	20	1314	16
184	822	56745	7338	14.87	0.32	12.83	0.31	660	21	1457	19
184	804	56747	7339	15.23	0.49	13.28	0.24	800	37	1570	14
184	804	56749	7339	14.92	0.37	13.36	0.13	718	26	1599	8
184	824	56751	7339	14.4	0.47	12.54	0.21	644	32	1483	13
184	824	56755	7339	15.04	0.46	13.42	0.3	691	32	1595	18
184	824	56768	7339	13.53	0.3	12.31	0.21	624	21	1519	12
184	848	56772	7339	13.91	0.33	11.99	0.33	643	23	1434	20
184	802	56780	7339	13.68	0.3	12.31	0.19	605	20	1449	11
184	802	56782	7339	13.37	0.28	11.93	0.36	635	20	1435	22
184	802	56783	7339	13.63	0.29	12.31	0.22	686	21	1486	13
184	802	56795	7339	13.57	0.42	11.69	0.21	650	30	1441	13
184	802	56799	7339	13.84	0.35	12.2	0.19	670	25	1436	11
184	806	56804	7339	14.39	0.35	12.77	0.34	632	24	1482	21
184	804	56808	7339	14.29	0.4	12.58	0.21	703	29	1489	13
184	804	56813	7339	13.42	0.23	12.06	0.18	685	16	1480	11
184	803	56825	7340	12.65	0.33	11.19	0.25	574	22	1360	15
184	803	56829	7340	12.8	0.32	10.87	0.24	617	23	1274	14
184	803	56833	7340	12.19	0.31	10.69	0.23	593	22	1272	14
184	803	56837	7340	11.91	0.35	10.52	0.22	593	25	1275	13
184	802	57038	7338	15.02	0.42	13.67	0.32	640	29	1466	20
184	802	57050	7338	14.98	0.31	12.44	0.16	630	21	1333	10
184	802	57067	7338	14.65	0.5	12.18	0.36	638	36	1363	22
184	804	57082	7339	16.52	0.32	14.08	0.31	685	22	1587	18
184	803	57106	7340	14.53	0.48	12.07	0.3	655	36	1299	18
184	804	57127	7338	15.74	0.31	12.61	0.42	625	22	1316	25
184	804	57135	7338	15.07	0.3	12.52	0.32	609	21	1317	20
184	802	57159	7338	16.41	0.5	13.37	0.17	708	37	1301	10
184	802	57166	7338	16.43	0.44	13.32	0.34	691	32	1345	20
184	805	57185	7340	16.2	0.43	13.96	0.21	641	28	1436	13
184	805	57196	7340	17.82	0.46	14.22	0.19	663	32	1422	12
184	802	57428	7339	20.47	0.4	16.57	0.29	822	28	1686	18
184	804	57435	7339	18.84	0.32	15.96	0.31	800	22	1718	19
184	804	57451	7339	17.88	0.38	14.85	0.23	799	27	1684	14
184	802	57463	7339	18.95	0.5	15.45	0.43	834	36	1649	27
184	802	57481	7339	17.92	0.27	14.65	0.34	769	19	1564	21
184	804	57492	7339	16.73	0.43	14.2	0.24	743	31	1612	15
184	804	57510	7339	16.03	0.33	13.62	0.23	665	23	1567	14
184	804	57518	7339	18.08	0.44	14.95	0.17	803	31	1623	10
184	804	57544	7339	18.44	0.37	15.33	0.27	764	27	1495	17
184	803	57570	7340	17.43	0.42	14.51	0.26	814	30	1573	16
184	803	57576	7340	16.22	0.67	13.91	0.38	721	48	1603	23

Табела А.1 – наставак са претходне странице

Rmid	fiber	MJD	plate	F_{5100}	δF_{5100}	F_{6200}	δF_{6200}	$F(\mathrm{H}\beta)$	$\delta F(\mathrm{H}\beta)$	$F(\mathrm{H}\alpha)$	$\delta F(\mathrm{H}\alpha)$
184	808	57781	7338	18.52	0.43	15.05	0.32	729	29	1520	19
184	802	57789	7338	18.47	0.57	15.15	0.32	715	39	1670	19
184	802	57805	7338	18.89	0.46	16.16	0.34	724	33	1639	21
184	802	57817	7338	18.61	0.41	16.03	0.18	721	28	1648	11
184	802	57832	7338	17.86	0.33	15.71	0.25	717	23	1673	15
184	802	57843	7338	18.76	0.4	16.09	0.31	738	29	1663	19
184	802	57859	7338	17.14	0.52	15.23	0.43	756	37	1665	26
184	802	57874	7338	16.38	0.43	14.1	0.25	727	31	1613	16
184	802	57892	7339	16.01	0.33	13.42	0.18	750	24	1536	11
184	802	57901	7339	16.0	0.51	13.58	0.21	683	38	1481	13
184	802	57918	7339	15.46	0.56	13.05	0.34	660	41	1428	22
184	802	57934	7339	14.63	0.27	12.31	0.21	677	21	1359	13
184	802	58127	7338	15.66	0.35	13.21	0.2	644	25	1333	12
184	804	58174	7338	15.15	0.46	13.73	0.35	672	32	1482	22
184	801	58216	7340	17.53	0.39	15.18	0.24	732	28	1542	15
184	805	58230	7340	15.96	0.35	14.27	0.26	726	25	1558	16
184	803	58258	7340	15.35	0.51	13.87	0.39	736	37	1595	24
184	807	58289	7340	14.86	0.39	13.47	0.14	688	28	1579	9
184	802	58561	7339	15.77	0.35	13.93	0.37	750	26	1565	24
184	802	58587	7339	16.39	0.5	14.57	0.25	807	37	1606	16
184	803	58627	7340	17.28	0.36	14.74	0.18	802	25	1651	11
184	803	58657	7340	16.32	0.37	14.09	0.18	781	27	1625	11
184	812	58867	7338	14.22	0.37	12.0	0.29	727	27	1382	18
184	808	58895	7339	13.06	0.41	11.5	0.18	600	28	1380	11
272	790	56449	7028	9.29	0.35	7.98	0.57	1027	48	2420	53
272	800	56660	7338	8.57	0.21	7.99	0.41	1026	29	2415	38
272	840	56664	7338	8.62	0.34	7.57	0.39	999	47	2465	35
272	797	56683	7339	8.44	0.25	7.22	0.49	902	32	2211	45
272	797	56686	7339	8.87	0.3	7.33	0.25	977	41	2241	23
272	795	56697	7339	8.95	0.32	7.77	0.41	965	42	2310	38
272	795	56715	7339	7.77	0.16	7.07	0.25	973	22	2290	23
272	832	56717	7338	8.23	0.18	7.97	0.3	1031	25	2631	28
272	777	56720	7339	7.78	0.3	7.13	0.35	978	41	2321	32
272	761	56722	7339	7.49	0.23	6.69	0.24	960	32	2232	22
272	779	56726	7340	7.52	0.18	6.84	0.54	931	24	2209	50
272	791	56739	7339	7.49	0.26	6.73	0.32	934	36	2217	29
272	774	56745	7338	7.92	0.26	7.3	0.19	929	36	2366	18
272	791	56747	7339	8.3	0.26	7.31	0.27	984	35	2331	25
272	791	56749	7339	8.42	0.31	7.56	0.25	984	43	2364	23
272	773	56751	7339	7.95	0.26	7.27	0.3	926	35	2232	27
272	773	56755	7339	8.13	0.37	7.33	0.4	953	52	2299	37
272	773	56768	7339	7.89	0.23	7.17	0.26	907	30	2256	24
272	749	56772	7339	7.93	0.24	7.35	0.28	876	33	2288	$\frac{-1}{26}$
272	799	56780	7339	8.39	0.27	7.55	0.32	959	38	2328	30
272^{-12}	791	56782	7339	8.52	0.29	7.35	0.43	903	$\frac{39}{39}$	2210	40
272	791	56783	7339	8.51	0.24	7.43	0.33	924	32	2180	30
272	791	56795	7339	9.54	0.27	8.63	0.56	937	38	2550	54
272	791	56799	7339	8.88	0.2	7.63	0.3	893	26	2228	28

Табела А.1 – наставак са претходне странице

Rmid	fiber	MJD	plate	F_{5100}	δF_{5100}	F_{6200}	δF_{6200}	$F(\mathrm{H}\beta)$	$\delta F(\mathrm{H}\beta)$	$F(\mathrm{H}\alpha)$	$\delta F(\mathrm{H}\alpha)$
272	795	56804	7339	9.33	0.33	8.28	0.26	1020	48	2395	24
272	793	56808	7339	8.7	0.29	7.7	0.37	979	42	2219	34
272	793	56813	7339	8.39	0.25	7.44	0.44	914	34	2110	41
272	795	56825	7340	9.78	0.3	8.34	0.29	1016	43	2359	27
272	795	56829	7340	9.73	0.27	8.15	0.34	964	32	2321	33
272	795	56833	7340	9.72	0.34	8.5	0.24	1034	48	2335	23
272	795	56837	7340	9.83	0.23	8.58	0.17	1037	32	2388	16
272	792	57038	7338	9.67	0.27	8.27	1.01	970	39	2264	98
272	796	57050	7338	9.52	0.24	8.33	0.35	939	29	2306	32
272	800	57067	7338	8.7	0.32	7.55	0.49	923	45	2150	47
272	793	57082	7339	10.08	0.39	8.73	0.32	1017	57	2488	30
272	793	57106	7340	10.2	0.39	9.29	0.33	1062	57	2469	32
272	796	57127	7338	10.45	0.44	8.47	0.67	1023	67	2220	63
272	796	57135	7338	10.86	0.5	8.65	0.52	1024	75	2198	50
272	792	57159	7338	11.46	0.4	9.68	0.31	1076	59	2286	29
272	792	57166	7338	11.46	0.39	9.24	0.55	1091	57	2330	54
272	791	57185	7340	10.92	0.28	9.37	0.23	1139	40	2536	23
272	791	57196	7340	10.56	0.27	9.43	0.21	1215	38	2588	20
272	793	57428	7339	11.81	0.5	10.29	0.33	1154	73	2630	31
272	791	57435	7339	10.39	0.32	8.92	0.47	989	37	2380	44
272	791	57451	7339	11.08	0.3	9.17	0.45	1088	44	2443	42
272	795	57463	7339	11.9	0.29	9.71	0.47	1149	42	2492	45
272	793	57481	7339	11.6	0.34	9.41	0.67	1152	48	2365	62
272	787	57492	7339	12.1	0.51	10.38	0.55	1202	71	2732	53
272	787	57510	7339	11.97	0.3	10.51	0.37	1186	41	2789	35
272	789	57518	7339	11.2	0.33	9.21	0.37	1177	45	2579	35
272	793	57544	7339	12.48	0.42	10.4	0.63	1250	60	2637	59
272	795	57570	7340	11.9	0.48	10.47	0.37	1226	68	2809	35
272	795	57576	7340	11.68	0.49	10.46	0.68	1089	59	2729	64
272	800	57781	7338	10.31	0.27	8.31	0.43	1081	38	2112	41
272	798	57789	7338	9.9	0.37	7.65	0.16	1013	52	2106	15
272	798	57805	7338	10.36	0.27	8.29	0.38	1042	37	2078	37
272	798	57817	7338	10.45	0.45	7.95	0.24	1044	62	2016	22
272	792	57832	7338	11.3	0.28	9.71	0.32	1205	38	2659	31
272	792	57843	7338	10.86	0.34	9.54	0.55	1190	45	2686	53
272	792	57859	7338	11.4	0.34	9.85	0.36	1218	47	2716	34
272	792	57874	7338	11.18	0.38	9.4	0.33	1195	53	2648	32
272	789	57892	7339	10.78	0.28	8.96	0.61	1130	39	2448	59
272	789	57901	7339	10.5	0.29	8.73	0.34	1109	41	2385	32
272	789	57918	7339	10.25	0.4	8.92	0.33	1084	54	2446	32
272	789	57934	7339	10.33	0.31	8.81	0.4	1058	41	2461	39
272	798	58127	7338	10.65	0.32	8.9	0.32	1098	41	2453	31
272	794	58174	7338	9.55	0.22	8.14	0.38	1027	26	2495	37
272	793	58216	7340	11.27	0.24	9.72	0.58	1191	32	2724	57
272	797	58230	7340	10.76	0.31	9.18	0.33	1198	42	2742	32
272	791	58258	7340	10.59	0.37	9.35	0.25	1134	46	2825	25
272	797	58289	7340	10.92	0.39	9.67	0.31	1167	52	2740	30
272	791	58561	7339	9.41	0.46	7.99	0.25	944	58	2264	25

Табела А.1 – наставак са претходне странице

Rmid	fiber	MJD	plate	F_{5100}	δF_{5100}	F_{6200}	δF_{6200}	$F(\mathrm{H}\beta)$	$\delta F(\mathrm{H}\beta)$	$F(\mathrm{H}\alpha)$	$\delta F(\mathrm{H}\alpha)$
272	791	58587	7339	8.67	0.45	7.53	0.31	1015	59	2274	30
272	797	58627	7340	10.78	0.44	9.75	0.38	1244	62	2932	37
272	797	58657	7340	11.58	0.42	10.64	0.64	1228	52	3134	63
272	798	58867	7338	10.95	0.28	9.45	0.27	1184	36	2583	26
272	799	58895	7339	10.2	0.31	8.81	0.42	1204	40	2619	40
341	413	56448	7030	8.81	0.56	6.42	0.54	614	74	1522	61
341	252	56660	7338	8.91	0.78	8.03	2.18	617	102	1445	238
341	248	56664	7338	9.54	0.74	6.91	1.29	643	94	1536	143
341	238	56683	7339	8.91	0.53	6.79	1.3	631	68	1402	152
341	236	56686	7339	8.88	0.58	6.95	0.62	641	73	1429	70
341	236	56697	7339	9.15	0.41	6.89	1.38	643	54	1457	162
341	236	56715	7339	9.2	0.49	7.27	1.12	663	68	1498	129
341	254	56717	7338	8.99	0.42	7.21	0.78	613	55	1474	89
341	298	56720	7339	8.69	0.61	6.95	2.18	633	85	1434	248
341	256	56722	7339	8.86	0.44	7.02	0.56	636	58	1467	64
341	258	56726	7340	8.48	0.63	6.29	1.14	628	88	1402	128
341	250	56739	7339	8.41	0.33	6.64	0.41	591	42	1412	46
341	258	56745	7338	8.27	0.27	6.41	0.25	591	34	1380	29
341	258	56747	7339	8.71	0.68	7.36	1.23	618	88	1458	139
341	258	56749	7339	8.48	0.42	6.72	0.95	603	54	1433	107
341	244	56751	7339	8.7	0.37	7.15	1.01	591	47	1432	114
341	244	56755	7339	8.33	0.4	6.73	0.57	561	50	1368	64
341	244	56768	7339	8.47	0.29	6.88	0.41	589	35	1443	46
341	248	56772	7339	8.72	0.36	6.83	1.06	634	47	1526	123
341	252	56780	7339	7.89	0.55	6.53	1.33	597	70	1459	157
341	256	56782	7339	7.78	0.39	6.44	1.97	606	48	1445	228
341	256	56783	7339	7.82	0.54	6.39	1.11	581	69	1373	127
341	256	56795	7339	8.0	0.34	6.17	0.63	602	46	1427	72
341	256	56799	7339	8.05	0.42	6.03	1.26	579	53	1426	150
341	258	56804	7339	8.65	0.6	6.97	1.06	601	79	1478	118
341	248	56808	7339	9.27	0.59	7.28	0.91	602	76	1538	102
341	248	56813	7339	8.72	0.46	6.99	0.68	582	60	1455	81
341	260	56825	7340	8.87	0.74	6.83	0.71	614	96	1451	84
341	260	56829	7340	9.08	0.54	7.31	1.09	603	69	1532	122
341	260	56833	7340	9.11	0.57	7.21	2.05	622	78	1573	234
341	260	56837	7340	8.98	0.33	7.24	0.92	632	43	1486	112
341	256	57038	7338	7.96	0.75	4.66	2.26	596	100	1474	278
341	248	57050	7338	8.17	0.34	6.96	0.58	625	44	1486	70
341	254	57067	7338	7.87	0.69	6.51	1.41	619	89	1510	167
341	260	57082	7339	7.56	0.35	6.44	0.54	587	46	1475	63
341	260	57106	7340	7.75	0.79	6.31	1.06	572	104	1475	130
341	254	57127	7338	7.65	0.56	6.23	1.77	568	75	1421	221
341	254	57135	7338	7.51	0.41	5.99	1.05	614	62	1481	129
341	292	57159	7338	7.18	0.44	6.41	0.92	529	58	1330	106
341	292	57166	7338	7.29	0.81	6.27	0.93	549	108	1329	111
341	258	57185	7340	7.69	0.39	6.43	0.54	571	51	1363	67
341	258	57196	7340	8.4	0.71	6.8	1.42	580	94	1434	172
341	254	57428	7339	7.93	0.34	6.52	0.68	558	45	1397	83

Табела А.1 – наставак са претходне странице

Rmid	fiber	MJD	plate	F_{5100}	δF_{5100}	F_{6200}	δF_{6200}	$F(\mathrm{H}\beta)$	$\delta F(\mathrm{H}\beta)$	$F(\mathrm{H}\alpha)$	$\delta F(\mathrm{H}\alpha)$
341	250	57463	7339	8.99	0.42	7.16	1.89	609	58	1463	228
341	260	57481	7339	8.48	0.64	6.83	0.82	586	91	1397	98
341	260	57492	7339	8.34	0.62	6.76	0.63	579	91	1364	75
341	260	57510	7339	8.92	0.59	7.49	1.78	607	88	1442	215
341	250	57518	7339	8.64	0.45	7.42	0.67	608	62	1427	79
341	260	57544	7339	8.63	0.56	6.72	0.66	612	78	1448	82
341	254	57570	7340	8.77	0.56	7.1	1.23	593	72	1516	146
341	254	57576	7340	8.82	0.6	7.13	0.39	597	83	1474	46
341	254	57781	7338	8.37	0.72	5.11	1.31	550	96	1368	165
341	232	57789	7338	8.25	0.3	6.17	0.73	573	38	1359	85
341	232	57805	7338	8.24	0.53	6.81	1.82	616	72	1424	217
341	232	57817	7338	8.05	0.44	6.76	0.91	582	55	1420	108
341	238	57832	7338	8.69	0.4	6.64	0.86	630	51	1526	105
341	238	57843	7338	8.85	0.43	7.17	1.38	622	58	1531	166
341	238	57859	7338	7.78	0.47	6.13	1.33	641	65	1489	160
341	238	57874	7338	7.49	0.44	6.57	0.76	592	56	1465	91
341	222	57892	7339	8.63	0.37	6.95	1.22	677	49	1710	143
341	222	57901	7339	7.41	0.47	6.17	1.08	582	63	1403	133
341	222	57918	7339	7.64	0.53	6.38	0.61	613	71	1509	72
341	222	57934	7339	8.65	0.38	7.17	0.55	649	50	1626	64
341	254	58127	7338	7.36	0.36	5.99	0.93	559	48	1283	110
341	256	58174	7338	7.86	0.52	6.45	0.89	576	73	1304	109
341	260	58216	7340	8.24	0.51	7.0	1.72	595	67	1465	204
341	258	58230	7340	7.64	0.49	6.43	0.77	566	68	1330	94
341	256	58258	7340	8.68	0.4	7.19	0.8	720	56	1615	97
341	254	58289	7340	7.82	0.59	6.94	0.45	646	79	1490	53
341	254	58561	7339	8.21	0.69	6.76	1.14	617	96	1431	138
341	254	58587	7339	8.35	0.8	6.65	1.27	578	105	1432	149
341	260	58627	7340	6.68	0.53	6.06	0.74	500	68	1287	84
341	260	58657	7340	7.05	0.37	6.05	0.69	549	51	1252	82
341	260	58867	7338	6.32	1.3	5.43	1.96	509	152	1270	237
341	260	58895	7339	6.56	0.37	5.76	1.11	555	50	1302	127
766	682	56664	7338	18.47	0.72	13.4	0.21	841	53	1966	14
766	727	56683	7339	17.79	0.32	12.72	0.25	835	23	1985	16
766	725	56686	7339	18.29	0.48	12.91	0.36	951	39	1993	23
766	723	56697	7339	16.91	0.47	11.93	0.33	820	36	1951	22
766	723	56715	7339	17.57	0.53	12.51	0.34	841	39	1927	22
766	726	56717	7338	17.84	0.36	12.75	0.26	863	26	1938	17
766	731	56720	7339	19.28	0.45	12.88	0.25	933	35	1935	16
766	727	56722	7339	18.0	0.36	12.42	0.21	858	26	1942	13
766	723	56726	7340	18.46	0.46	12.93	0.29	918	36	1927	19
766	729	56739	7339	17.86	0.4	12.13	0.26	899	30	1940	17
766	724	56745	7338	18.01	0.45	12.19	0.39	907	34	1959	25
766	725	56747	7339	17.77	0.61	11.11	0.3	1015	49	1862	19
766	725	56749	7339	16.71	0.43	11.57	0.16	852	32	1906	10
766	727	56751	7339	17.51	0.5	12.31	0.31	900	37	1966	19
766	727	56755	7339	17.16	0.45	12.25	0.19	892	33	2012	12
766	727	56768	7339	16.84	0.49	12.1	0.22	851	35	2028	14

Табела А.1 – наставак са претходне странице

Rmid	fiber	MJD	plate	F_{5100}	δF_{5100}	F_{6200}	δF_{6200}	$F(\mathrm{H}\beta)$	$\delta F(\mathrm{H}\beta)$	$F(\mathrm{H}\alpha)$	$\delta F(\mathrm{H}\alpha)$
766	773	56772	7339	15.87	0.53	11.68	0.41	834	39	2008	26
766	723	56780	7339	17.31	0.5	12.79	0.42	864	37	2031	27
766	725	56782	7339	16.67	0.41	11.54	0.31	825	30	1891	19
766	725	56783	7339	17.47	0.53	12.19	0.27	903	40	1933	17
766	725	56795	7339	17.2	0.49	11.36	0.37	906	38	1935	24
766	725	56799	7339	16.71	0.43	11.26	0.23	889	32	1892	15
766	723	56804	7339	18.31	0.5	13.7	0.35	842	35	2109	22
766	725	56808	7339	17.93	0.62	12.47	0.32	876	44	1987	20
766	725	56813	7339	16.25	0.6	11.05	0.25	891	44	1946	15
766	731	56825	7340	13.33	0.49	9.68	0.22	758	36	1845	14
766	731	56829	7340	16.05	0.49	10.82	0.3	877	39	1846	19
766	731	56833	7340	15.28	0.32	10.56	0.25	813	24	1828	15
766	731	56837	7340	15.05	0.44	10.56	0.17	828	34	1814	11
766	722	57038	7338	14.72	0.62	9.19	0.35	801	48	1615	22
766	722	57050	7338	17.05	0.49	11.74	0.39	928	38	1950	25
766	722	57067	7338	13.97	0.38	9.12	0.4	804	28	1773	26
766	723	57082	7339	13.79	0.4	9.56	0.3	746	30	1850	19
766	727	57106	7340	15.85	0.53	10.7	0.27	841	41	1769	17
766	722	57127	7338	16.68	0.61	10.98	0.29	905	46	1773	18
766	722	57135	7338	16.73	0.36	10.66	0.29	894	26	1808	19
766	740	57159	7338	21.17	0.54	13.89	0.33	1001	38	2029	20
766	740	57166	7338	20.38	0.72	14.02	0.19	1011	50	2098	12
766	725	57185	7340	20.2	0.68	13.97	0.4	1007	47	2125	25
766	725	57196	7340	20.21	0.44	13.66	0.41	1140	31	2192	25
766	723	57428	7339	14.84	0.82	9.91	0.23	820	63	1805	15
766	725	57435	7339	14.67	0.52	9.32	0.45	793	40	1739	29
766	725	57451	7339	16.02	0.69	9.45	0.31	856	55	1695	20
766	725	57463	7339	16.35	0.56	9.45	0.41	849	42	1651	26
766	725	57481	7339	18.12	0.49	11.54	0.41	847	37	1817	27
766	725	57492	7339	17.52	0.65	12.02	0.43	862	48	1897	27
766	725	57510	7339	17.41	0.41	12.28	0.35	829	29	1986	22
766	725	57518	7339	19.11	0.44	12.08	0.26	1007	36	1876	17
766	725	57544	7339	20.59	0.56	13.58	0.54	1016	45	2017	36
766	727	57570	7340	18.22	0.47	13.02	0.41	1054	37	2117	26
766	727	57576	7340	17.57	0.7	12.48	0.51	923	50	2149	32
766	722	57781	7338	14.92	0.4	9.45	0.23	745	32	1562	15
766	722	57789	7338	14.94	0.79	10.32	0.35	725	63	1762	23
766	722	57805	7338	15.41	0.64	10.93	0.37	768	52	1819	25
766	722	57817	7338	14.07	0.44	9.91	0.24	748	35	1814	16
766	730	57832	7338	11.42	0.45	5.74	0.37	826	43	1317	24
766	730	57843	7338	12.61	0.62	7.33	0.33	647	51	1376	21
766	730	57859	7338	12.32	0.56	6.86	0.38	694	47	1390	25
766	730	57874	7338	11.72	0.33	6.92	0.29	653	28	1336	19
766	725	57892	7339	13.55	0.72	8.72	0.29	686	62	1543	19
766	725	57901	7339	13.94	0.52	9.16	0.38	680	46	1563	25
766	725	57918	7339	15.42	0.55	10.53	0.43	725	47	1668	29
766	725	57934	7339	17.9	0.57	11.74	0.36	831	48	1696	23
766	724	58127	7338	17.38	0.43	11.33	0.34	803	34	1714	22

Табела А.1 – наставак са претходне странице

Rmid	fiber	MJD	plate	F_{5100}	δF_{5100}	F_{6200}	δF_{6200}	$F(H\beta)$	$\delta F(\mathrm{H}\beta)$	$F(H\alpha)$	$\delta F(\mathrm{H}\alpha)$
766	724	58174	7338	16.47	0.43	10.7	0.28	732	37	1723	18
766	727	58216	7340	19.53	0.55	13.32	0.39	868	48	1802	26
766	737	58230	7340	19.38	0.49	13.31	0.28	875	40	1869	18
766	727	58258	7340	18.08	0.47	12.72	0.31	816	40	1868	20
766	723	58289	7340	19.27	0.52	13.7	0.42	888	44	1935	28
766	725	58561	7339	14.31	0.62	9.25	0.29	807	57	1613	19
766	725	58587	7339	17.43	0.62	11.26	0.27	804	56	1616	19
766	727	58627	7340	19.39	0.44	14.34	0.46	829	36	1928	31
766	727	58657	7340	20.83	0.51	15.85	0.41	926	42	2075	27
766	726	58867	7338	16.1	0.42	10.41	0.17	785	37	1691	11
766	727	58895	7339	15.43	0.39	10.4	0.22	741	32	1663	15
775	556	56660	7338	10.38	0.37	8.48	0.64	544	45	1270	61
775	596	56664	7338	12.04	0.59	9.56	0.43	559	58	1458	37
775	557	56683	7339	9.25	0.28	6.86	0.4	569	32	1110	38
775	559	56686	7339	11.64	0.39	9.72	0.5	639	44	1463	48
775	559	56697	7339	11.17	0.51	8.74	0.51	643	58	1416	49
775	559	56715	7339	10.0	0.34	8 11	0.01	622	38	1421	24
775	544	56717	7338	9.57	0.3	7 73	0.18	595	33	1318	17
775	515	56720	7339	9.32	0.9 0.25	7.16	$0.10 \\ 0.66$	550	$\frac{33}{27}$	1394	63
775	505	56722	7339	8.8	0.20 0.34	6.93	0.00	590 590	$\frac{21}{37}$	1370	43
775	519	56726	7340	8.0	0.04	6.98	0.40 0.37	525	33	1310	40 34
775	550	56730	7330	10.97	0.32 0.31	0.50 8.45	0.01	595	36	1/75	04 94
775	516	56745	7338	10.27	0.01 0.42	0.40 8 89	0.20 0.25	588		1478	24 24
775	550	56747	7330	0.0	0.42 0.56	6.62	0.20 0.43	40.2	40 62	1120	24 40
775	550	56740	7330	9.0 8.68	0.00 0.31	6.53	0.43 0.41	492 500	$\frac{02}{35}$	1139	40 38
775	510	56751	7330	10 19	0.01 0.43	0.00 8.44	0.41	536		1320	10 49
775	519	56755	7330	0.68	0.45	7.44	0.44 0.62	528	40 53	1020 1956	42 58
775	519	56768	7220	9.00	0.40	7.90	0.02	506	00 26	1200 1910	24
775	519	56779	7009	0.90	0.55	1.19 0.20	0.00	567	30 47	1219 1975	04 20
775	577	50772	7009 700	9.00	0.4	0.02 E 9E	0.00	007 459	41	1070	00 20
775	559	50760	7009 700	0.04	0.34	0.00	0.31	400 506	00 20	$1001 \\ 1957$	ეე იე
775	009 550	00782 56792	7009 700	9.00	0.34	7.40	0.55	020 404	30 E0	1207 1025	აა იი
775	559 550	00780 EC70E	7009 7000	8.91 7.04	0.40	7.05 C E1	0.31	494 599	00 CO	$1200 \\ 1007$	29
(() 775	559 550	50795 EC700	7339 7220	(.94	0.39	0.31	0.3	022 EOE	02 42	1237	28 22
	559 550	50799	7339	8.19	0.41	0.01	0.37	000 500	43	1239	33 FF
(() 775	559 550	50804 EC909	7339 7220	10.40 10.97	0.43	8.08	0.58	520 500	48	1208	00 20
	559 550	00808 50010	7339	10.27	0.41	8.10	0.05	500	40	1200	49
775	559	56813	7339	8.58	0.41	0.82	0.25	510	43 50	1230	23
775	551	56825	7340	9.51	0.48	7.17	0.41	106	52 50	1344	40
775	551 551	56829	7340	9.73	0.55	8.28	0.43	480	58 40	1315	40 60
775	551	56833	7340	9.45	0.43	7.68	0.67	518	46	1352	63 27
775	551	56837	7340	9.25	0.45	7.54	0.27	526	47	1320	25
775	556	57038	7338	9.89	0.42	8.64	0.39	548	48	1358	36
775	556	57050	7338	10.24	0.53	8.51	0.41	599	59	1374	37
775	556	57067	7338	8.62	0.4	7.15	0.49	500	45	1159	44
775	559	57082	7339	9.96	0.64	7.36	0.38	503	67	1301	35
775	557	57106	7340	10.16	0.36	8.49	0.27	498	37	1343	24
775	552	57127	7338	12.7	0.49	9.75	0.72	662	51	1484	65
775	552	57135	7338	11.52	0.34	8.77	0.34	632	36	1446	31

Табела А.1 – наставак са претходне странице

Rmid	fiber	MJD	plate	F_{5100}	δF_{5100}	F_{6200}	δF_{6200}	$F(\mathrm{H}\beta)$	$\delta F(\mathrm{H}\beta)$	$F(\mathrm{H}\alpha)$	$\delta F(\mathrm{H}\alpha)$
775	672	57159	7338	12.09	0.58	9.49	0.44	729	65	1425	40
775	672	57166	7338	11.03	0.55	8.43	0.33	683	59	1459	30
775	557	57185	7340	10.82	0.53	8.48	0.24	675	56	1452	21
775	557	57196	7340	11.65	0.45	9.57	0.46	592	45	1445	42
775	559	57428	7339	9.34	0.46	7.65	0.46	568	48	1346	43
775	553	57435	7339	9.47	0.58	8.02	0.74	573	63	1427	69
775	553	57451	7339	9.84	0.5	8.26	0.69	655	54	1579	64
775	559	57463	7339	8.3	0.58	6.49	0.54	629	59	1421	50
775	559	57481	7339	7.87	0.37	6.56	0.58	568	37	1340	52
775	559	57492	7339	7.35	0.38	6.15	0.37	539	37	1258	33
775	559	57510	7339	9.2	0.59	7.03	0.5	574	65	1260	45
775	559	57518	7339	8.93	0.42	7.22	0.53	575	43	1385	49
775	559	57544	7339	10.33	0.41	8.8	0.51	498	45	1279	45
775	555	57570	7340	8.65	0.43	7.34	0.45	538	46	1385	40
775	555	57576	7340	8.6	0.62	7.11	0.38	580	66	1377	36
775	558	57781	7338	11.08	0.51	9.15	0.48	613	58	1493	44
775	556	57789	7338	8.8	1.13	6.81	0.84	652	145	1427	76
775	556	57805	7338	10.02	1.22	7.49	1.22	611	152	1399	114
775	556	57817	7338	9.04	0.93	7.19	0.94	683	115	1447	90
775	560	57832	7338	10.23	0.39	9.32	0.48	682	44	1609	44
775	560	57843	7338	10.02	0.41	9.16	0.62	584	43	1525	57
775	560	57859	7338	10.07	0.48	8.9	0.53	705	54	1655	50
775	560	57874	7338	9.7	0.71	8.39	0.42	635	78	1583	41
775	559	57892	7339	8.46	0.65	6.85	0.29	612	72	1437	27
775	559	57901	7339	7.73	0.47	7.12	0.33	600	51	1439	31
775	559	57918	7339	8.55	0.52	7.14	0.59	593	61	1367	57
775	559	57934	7339	8.72	0.51	7.18	0.36	601	56	1389	34
775	558	58127	7338	11.3	0.43	8.75	0.47	663	46	1431	44
775	556	58174	7338	12.32	0.55	10.4	0.62	726	53	1730	60
775	557	58216	7340	10.41	0.53	8.73	0.33	622	58	1387	29
775	559	58230	7340	9.86	0.39	7.26	0.46	642	40	1397	43
775	557	58258	7340	9.47	0.55	7.55	0.72	662	54	1436	65
775	559	58289	7340	9.72	0.46	7.64	0.37	620	45	1368	33
775	557	58561	7339	9.46	0.63	7.24	0.72	787	59	1711	61
775	557	58587	7339	9.07	0.43	7.75	0.45	732	43	1568	40
775	557	58627	7340	9.83	0.51	7.88	0.58	635	52	1424	51
775	557	58657	7340	8.57	0.58	7.08	0.55	657	60	1478	50
775	556	58867	7338	10.36	0.5	8.7	0.28	816	49	1912	25
775	553	58895	7339	10.25	0.66	8.8	0.34	814	62	1928	30
775	556	56660	7338	10.38	0.37	8.48	0.64	544	45	1270	61
775	596	56664	7338	12.04	0.59	9.56	0.43	559	58	1458	37
775	557	56683	7339	9.25	0.28	6.86	0.4	569	32	1110	38
775	559	56686	7339	11.64	0.39	9.72	0.5	639	44	1463	48
775	559	56697	7339	11.17	0.51	8.74	0.51	643	58	1416	49
775	559	56715	7339	10.0	0.34	8.11	0.26	622	38	1421	24
775	544	56717	7338	9.57	0.3	7.73	0.18	595	33	1318	17
775	515	56720	7339	9.32	0.25	7.96	0.66	550	27	1394	63
775	505	56722	7339	8.8	0.34	6.93	0.46	590	37	1370	43

Табела А.1 – наставак са претходне странице

Rmid	fiber	MJD	plate	F_{5100}	δF_{5100}	F_{6200}	δF_{6200}	$F(\mathrm{H}\beta)$	$\delta F(\mathrm{H}\beta)$	$F(\mathrm{H}\alpha)$	$\delta F(\mathrm{H}\alpha)$
775	519	56726	7340	8.9	0.32	6.98	0.37	525	33	1311	34
775	559	56739	7339	10.27	0.31	8.45	0.26	595	36	1475	24
775	516	56745	7338	10.88	0.42	8.82	0.25	588	46	1478	24
775	559	56747	7339	9.0	0.56	6.62	0.43	492	62	1139	40
775	559	56749	7339	8.68	0.31	6.53	0.41	509	35	1130	38
775	519	56751	7339	10.12	0.43	8.44	0.44	536	48	1320	42
775	519	56755	7339	9.68	0.46	7.95	0.62	528	53	1256	58
775	519	56768	7339	8.96	0.33	7.19	0.36	506	36	1219	34
775	577	56772	7339	9.86	0.4	8.32	0.33	567	47	1375	30
775	559	56780	7339	8.04	0.34	5.85	0.31	458	38	1061	30
775	559	56782	7339	9.66	0.34	7.46	0.35	526	38	1257	33
775	559	56783	7339	8.91	0.46	7.03	0.31	494	50	1235	29
775	559	56795	7339	7.94	0.59	6.51	0.3	522	62	1237	28
775	559	56799	7339	8.19	0.41	6.61	0.37	505	43	1239	33
775	559	56804	7339	10.46	0.43	8.08	0.58	520	48	1258	55
775	559	56808	7339	10.27	0.41	8.16	0.53	500	45	1265	49
775	559	56813	7339	8.58	0.41	6.82	0.25	510	43	1230	23
775	551	56825	7340	9.51	0.48	7.17	0.41	561	52	1344	40
775	551	56829	7340	9.73	0.55	8.28	0.43	486	58	1315	40
775	551	56833	7340	9.45	0.43	7.68	0.67	518	46	1352	63
775	551	56837	7340	9.25	0.45	7.54	0.27	526	47	1320	25
775	556	57038	7338	9.89	0.42	8.64	0.39	548	48	1358	36
775	556	57050	7338	10.24	0.53	8.51	0.41	599	59	1374	37
775	556	57067	7338	8.62	0.4	7.15	0.49	500	45	1159	44
775	559	57082	7339	9.96	0.64	7.36	0.38	503	67	1301	35
775	557	57106	7340	10.16	0.36	8.49	0.27	498	37	1343	24
775	552	57127	7338	12.7	0.49	9.75	0.72	662	51	1484	65
775	552	57135	7338	11.52	0.34	8.77	0.34	632	36	1446	31
775	672	57159	7338	12.09	0.58	9.49	0.44	729	65	1425	40
775	672	57166	7338	11.03	0.55	8.43	0.33	683	59	1459	30^{-3}
775	557	57185	7340	10.82	0.53	8.48	0.24	675	56	1452	21
775	557	57196	7340	11.65	0.45	9.57	0.46	592	45	1445	${42}$
775	559	57428	7339	9.34	0.46	7.65	0.46	568	48	1346	43
775	553	57435	7339	9.47	0.58	8.02	0.74	573	63	1427	69
775	553	57451	7339	9.84	0.5	8.26	0.69	655	54	1579	64
775	559	57463	7339	8.3	0.58	6.49	0.54	629	59	1421	50
775	559	57481	7339	7.87	0.37	6.56	0.58	568	37	1340	52
775	559	57492	7339	7.35	0.38	6.15	0.37	539	37	1258	33
775	559	57510	7339	92	0.50	7.03	0.5	574	65	1260	45
775	559	57518	7339	8.93	0.42	7.22	0.53	575	43	1385	49
775	559	57544	7339	10.33	0.41	8.8	0.51	498	45	1279	45
775	555	57570	7340	8.65	0.43	7.34	0.45	538	46	1385	40
775	555	57576	7340	8.6	0.62	7.11	0.38	580	66	1377	36
775	558	57781	7338	11.08	0.51	9.15	0.48	613	58	1493	44
775	556	57789	7338	8.8	1.13	6.81	0.84	652	145	1427	76
775	556	57805	7338	10.02	1.22	7.49	1.22	611	152	1399	 114
775	556	57817	7338	9.04	0.93	7.19	0.94	683	115	1447	90
775	560	57832	7338	10.23	0.39	9.32	0.48	682	44	1609	44

Табела А.1 – наставак са претходне странице

Rmid	fiber	MJD	plate	F_{5100}	δF_{5100}	F_{6200}	δF_{6200}	$F(\mathrm{H}\beta)$	$\delta F(\mathrm{H}\beta)$	$F(\mathrm{H}\alpha)$	$\delta F(\mathrm{H}\alpha)$
775	560	57843	7338	10.02	0.41	9.16	0.62	584	43	1525	57
775	560	57859	7338	10.07	0.48	8.9	0.53	705	54	1655	50
775	560	57874	7338	9.7	0.71	8.39	0.42	635	78	1583	41
775	559	57892	7339	8.46	0.65	6.85	0.29	612	72	1437	27
775	559	57901	7339	7.73	0.47	7.12	0.33	600	51	1439	31
775	559	57918	7339	8.55	0.52	7.14	0.59	593	61	1367	57
775	559	57934	7339	8.72	0.51	7.18	0.36	601	56	1389	34
775	558	58127	7338	11.3	0.43	8.75	0.47	663	46	1431	44
775	556	58174	7338	12.32	0.55	10.4	0.62	726	53	1730	60
775	557	58216	7340	10.41	0.53	8.73	0.33	622	58	1387	29
775	559	58230	7340	9.86	0.39	7.26	0.46	642	40	1397	43
775	557	58258	7340	9.47	0.55	7.55	0.72	662	54	1436	65
775	559	58289	7340	9.72	0.46	7.64	0.37	620	45	1368	33
775	557	58561	7339	9.46	0.63	7.24	0.72	787	59	1711	61
775	557	58587	7339	9.07	0.43	7.75	0.45	732	43	1568	40
775	557	58627	7340	9.83	0.51	7.88	0.58	635	52	1424	51
775	557	58657	7340	8.57	0.58	7.08	0.55	657	60	1478	50
775	556	58867	7338	10.36	0.5	8.7	0.28	816	49	1912	25
775	553	58895	7339	10.25	0.66	8.8	0.34	814	62	1928	30
776	559	56660	7338	8.51	0.45	6.01	0.44	516	62	978	46
776	597	56664	7338	9.79	0.68	7.34	0.46	567	91	1064	48
776	558	56683	7339	7 75	0.39	51	0.38	509	53	861	38
776	544	56686	7339	7.72	0.50	4 74	0.30 0.41	517	69	868	42
776	550	56697	7339	7.39	0.44	4 73	$0.11 \\ 0.32$	501	60 60	853	33
776	550	56715	7339	6.0	$0.11 \\ 0.45$	3 4	0.02	405	62	706	24
776	543	56717	7338	7.57	$0.10 \\ 0.47$	5.04	0.19	438	66	869	19
776	512	56720	7339	8.39	$0.11 \\ 0.64$	6.55	0.10 0.21	497	96	1008	$\frac{10}{22}$
776	506	56722	7339	8.52	0.01	5.58	0.38	501	42	967	$\frac{22}{40}$
776	500 516	56726	7340	732	0.25 0.35	4.62	0.00	415	46	836	34
776	550	56739	7330	9.07	0.50	4.02 6.06	0.00 0.47	646	108	1037	59 50
776	500 513	56745	7338	03	0.1	6.83	0.11	602	44	1122	35
776	552	56747	7330	7.44	0.32 0.35	0.00 5.03	0.04 0.37	406	30	917	38
776	552	56740	7330	7.59	0.50	$\frac{0.00}{4.74}$	0.01	-100 513	55 73	000	30 34
776	510	56751	7330	8.88	0.55 0.54	6 55	0.00	541	73 73	1050	04 20
776	510	56755	7330	0.00	0.04	0.00 6 30	0.20 0.34	510	75 55	1000	25 36
776	510	56768	7330	9.20 8.63	0.4 0.47	0.39 5.81	0.34	525	55 67	001	35 35
776	580	56772	7330	7.00	0.41 0.24	5.01 5.31	$\begin{array}{c} 0.33 \\ 0.97 \end{array}$	525	34	005	00 20
776	554	56780	7330	8.08	0.24 0.27	6.19	0.27	582		990 006	29
776	548	56789	7330	0.90	0.21 0.35	$0.12 \\ 7.95$	0.30 0.34	500	40	330 1189	36
776	548	56783	7330	9.9 0.04	0.30	7.20 7.41	0.34 0.28	503	40 54	1102 1130	30 30
776	540	56705	7220	9.94	0.59	6.00	0.20	546	62	1139 1170	00 20
110 776	040 540	56700	7220	0.09	0.02 0.97	0.99	0.20	60E	26 26	1000	<i>∠∀</i> 20
110 776	040 560	20199	7220	9.00 0.49	0.21	0.00	0.20	000 619	50 65	1220 1106	∠9 22
110 776	000 550	56000	7009 7990	9.42	0.40	0.00	0.04	010 577	00 71	1040	აა ი <i>4</i>
110 776	000 550	00000 56019	7990	00E	0.04	0.01 5.76	0.24 0.97	074 505	(1 60	1040 1099	24 20
110	000 EE4	00010 56005	1009 7240	0.00	0.0	0.10 5.07	0.21	090 550	09 45	10 <i>44</i> 1120	20 00
110 776	004 554	00020 56000	704U 7940	9.11 0 52	U.3ð 0.66	0.07 6.07	0.28 0.16	000 515	40 70	1102 1190	20 16
110	004 554	008 <i>2</i> 9 56022	1040 7940	9.00 0 KO	0.00	0.97	0.10	010 E70	10	1110	10 06
110	004	00833	1340	0.02	0.38	0.52	0.20	016	47	1112	20

Табела А.1 – наставак са претходне странице

Rmid	fiber	MJD	plate	F_{5100}	δF_{5100}	F_{6200}	δF_{6200}	$F(\mathrm{H}\beta)$	$\delta F(\mathrm{H}\beta)$	$F(\mathrm{H}\alpha)$	$\delta F(\mathrm{H}\alpha)$
776	554	56837	7340	8.43	0.48	5.64	0.34	560	61	1100	34
776	553	57038	7338	8.0	0.51	5.3	0.27	640	64	1062	25
776	551	57050	7338	8.9	0.49	6.4	0.43	644	57	1249	41
776	557	57067	7338	7.59	0.53	5.19	0.22	543	64	1066	21
776	552	57082	7339	6.63	0.37	4.34	0.25	533	46	1081	24
776	556	57106	7340	6.09	0.48	4.69	0.37	436	55	1038	35
776	553	57127	7338	7.78	0.45	5.7	0.39	470	54	1052	39
776	553	57135	7338	7.21	0.52	5.25	0.27	432	54	1035	27
776	583	57159	7338	7.25	0.43	4.97	0.18	540	51	993	17
776	583	57166	7338	5.73	0.46	3.76	0.3	494	52	953	28
776	556	57185	7340	5.2	0.54	2.36	0.33	375	60	715	30
776	556	57196	7340	6.25	0.43	3.56	0.39	400	50	794	37
776	550	57428	7339	8.28	0.5	5.46	0.28	498	59	970	26
776	548	57435	7339	8.6	0.48	5.87	0.42	527	54	1138	40
776	548	57451	7339	7.87	0.47	5.6	0.21	608	52	1239	19
776	552	57463	7339	8.17	0.53	5.76	0.25	601	57	1227	22
776	550	57481	7339	8.67	0.43	6.08	0.37	559	48	1153	33
776	546	57492	7339	6.46	0.33	43	0.35	512	32	998	30
776	546	57510	7339	6.56	0.36	3.85	0.00	485	42	906	26
776	550	57518	7339	6.65	0.30	4 41	0.25	414	33	985	20
776	550	57544	7339	7.06	0.52 0.53	6 29	0.20 0.34	447	60	938	20 30
776	556	57570	7340	6.00	0.00	0.20 1 39	0.51	357	44	966	
776	556	57576	7340	5.88	0.41 0.57	4.02 3.5	0.01	445	68	0.21	40 20
776	555	57781	7338	$\frac{0.00}{7.43}$	0.07	5.66	0.00	440	50	921	29 99
776	551	57780	7338	5.07	0.40	3.00	0.20 0.27	409 476	50 50	944 058	22 93
776	551	57805	7220	5.07	0.40	0.47 2.57	0.21	201		900 876	20 94
776	551	57015	7220	0.2 1.9.1	0.40	0.07 2.14	0.20	301 404	47	010 867	24 19
776	551	57020	7000	4.04 5.44	0.4	0.14 2.00	0.22	404	47 01	007	10 94
770	001 551	57032	7000	0.44	0.07	5.99 4 79	0.4	441	01 EC	920	34 95
770	001 551	07840 E79E0	(000 7000	0.34	0.47	4.72	0.29	407	00 4.4	004	20
((0 770	001 551	57859	(338	4.00	0.30	3.11	0.43	470	44	924	38 90
110	551	57874	(338 7220	4.33	0.37	3.01	0.32	377	41	828	20
110	550 550	57892	7339	5.12 5.51	0.39	3.62	0.44	354	44	119	38 90
776	550 550	57901	7339	5.51	0.33	3.57	0.31	413	39 50	844	26
776	550	57918	7339	4.89	0.49	3.1 2.01	0.34	393	90 20	817	29
776	550	57934	7339	4.5	0.42	2.81	0.17	318	39	784	14
776	553	58127	7338	7.0	0.29	5.1	0.18	413	34	847	16
776	553	58174	7338	7.48	0.57	5.65	0.46	383	75	862	41
776	558	58216	7340	4.14	0.52	2.96	0.3	269	65	667	28
776	556	58230	7340	5.12	0.73	3.62	0.32	313	97	716	29
776	556	58258	7340	4.25	0.58	2.89	0.49	336	91	605	47
776	556	58289	7340	5.4	0.43	3.38	0.32	320	61	675	32
776	550	58561	7339	4.95	0.41	3.13	0.28	392	45	819	24
776	550	58587	7339	5.82	0.43	4.07	0.16	412	48	860	15
776	560	58627	7340	5.27	0.37	3.12	0.39	411	48	744	35
776	560	58657	7340	4.96	0.36	2.6	0.31	317	44	669	28
776	557	58867	7338	5.64	0.49	3.73	0.42	397	63	736	39
776	546	58895	7339	5.88	0.29	3.79	0.23	418	34	763	21

Слика А.1: Пример фита за објекат RMID 101

Слика А.2: Пример фита за објекат RMID 126

Слика А.3: Пример фита за објекат RMID 184

Слика А.4: Пример фита за објекат RMID 341

Слика А.5: Пример фита за објекат RMID 775

Слика А.6: Пример фита за објекат RMID 776

Слика А.7: Исто као на слици 5.6 само за RMID 766

Слика А.8: Исто као а слици 5.7 само за RMID 766

Слика А.9: Исто као на слици 5.6 само за RMID 126

Слика А.10: Исто као а слици 5.7 само за RMID 126

Слика А.11: Исто као на слици 5.6 само за RMID 101

Слика А.12: Исто као а слици 5.7 само за RMID 101

Слика А.13: Исто као на слици 5.6 само за RMID 775

Слика А.14: Исто као а слици 5.7 само за RMID 775

Слика А.15: Исто као на слици 5.6 само за RMID 184

Слика А.16: Исто као а слици 5.7 само за RMID 184

Слика А.17: Исто као на слици 5.6 само за RMID 776

Слика А.18: Исто као а слици 5.7 само за RMID 776

Слика А.19: Исто као на слици 5.10 само за RMID 766.

Слика А.20: Исто као на слици 5.10 само за RMID 126.

Слика А.21: Исто као на слици 5.10 само за RMID 101.

Слика А.22: Исто као на слици 5.10 само за RMID 775.

Слика А.23: Исто као на слици 5.10 само за RMID 184.

Слика А.24: Исто као на слици 5.10 само за RMID 776.

Додатак Б

Пратеће табеле и графици за испитивање кинематике широколинијског региона

У овом додатку прилажемо примере више-компонентног фита у опсегу 4200-7000 Å таласних дужина за неколико додатних објеката, као и комплетну табела која сумира измерене спектрални параметри за 946 SDSS АГЈ тип 1. Приказане колоне су: SDSS ID објекта, космолошки црвени помак, луминозност континуума $\log \lambda L_{5100 \text{ Å}}$, оптичка FeII емисија R_{FeII} , пуна ширина на половини (FWHM), четврини (FWQM), и 10% (FW10M) максимума интензитета, и одговарајуће асиметрије (z50, z25, z10). Ширине линија и асиметрије су приказане за Н α и Н β широке линије.

Слика Б.1: Пример фита спектра из SDSS базе података. Спектар је фитован у опсегу $\lambda\lambda 4200 - 7000 \mathring{A}$ \mathring{A} . Горњи график: посматрани спектар (сива линија); модел (црвена лина), широке и средње широке линије (плава и светло плава линија респективно), континуум (зелена испрекидана линија), уске линије (зелена пуна линија), Fe II модел (црна испкредина линија), широке [O III] линије (жута линија). Доњи панел: лево – увечани регион око Н β - линије, десно – увечани регион око Н α линије.

Слика Б.2: Исто као и Б.1 само за 7585-57190-0369 објекат.

Слика Б.3: Исто као и Б.1 само за 8427-57846-0717 објекат.

Слика Б.4: Исто као и Б.1 само за 0490-51929-0565 објекат.

Слика Б.5: Исто као и Б.1 само за 0459-51924-0213 објекат.

Слика Б.6: Исто као и Б.1 само за 11072-58436-0135 објекат.

Слика Б.7: Исто као и Б.1 само за 7665-57328-0863 објекат.

Слика Б.8: Исто као и Б.1 само за 8738-57402-0859 објекат.

објекта, космолошки црвени помак, луминозност континума log $\lambda L_{5100 \text{Å}}$, ооптичка FeII емисија R_{FeII} , пуна ширина на пола (FWHM), четврини (FWQM), и 10% (FW10M) максимума интензитета, и одговарајуће асиметрије (z50, z25, z10). Ширине линија и аси-Табела Б.1: Мерени спектрални параметри за 946 SDSS АГЈ тип 1. Колоне су: SDSS ИД метрије су да те за Н
 и
 Н β широке линије.

SDSS ID	\$	<u>YT</u>	$R_{\rm Fall}$	FW	$\overline{M}\overline{H}$	FW	\overline{MO}	FW	M0	z_5	0	z_2	5 L	z1(
plate-MJD-fiber		$[ergs^{-1}]$		[km	s ⁻¹]	[km	s^{-1}	[km	5-1]	[kms	5-1]	[kms	-1	[kms	-1]
4				H_{β}	H_{α}	H_{β}	H_{α}	H_{β}	H_{α}	${ m H}_{eta}$	H_{α}	${ m H}_{eta}$	H_{α}	H_{β}	H^{α}
10747 - 58220 - 0638	0.25	44.51	0.68	2120	2100	3800	3200	6860	5940	02	0	150	0	150	0
8823-57446-0286	0.27	44.55	0.25	3210	3020	5550	4620	8320	7220	290	0	1020	140	1460	730
7905 - 57666 - 0305	0.20	44.02	0.43	3650	2700	5250	4300	6860	6210	0	-50	0	-180	0	-270
0499-51988-0243	0.16	43.94	0.59	3070	2240	5110	3570	7450	5530	290	50	730	00	1020	230
8364 - 58138 - 0460	0.40	44.89	0.56	4160	3890	7080	6030	10370	9140	360	50	1240	180	1750	370
7706-57575-0538	0.36	45.25	0.22	5460	4540	7800	7530	9980	10560	-70	2520	-70	3210	-70	3210
0414 - 51869 - 0479	0.36	44.80	0.11	6920	6850	9830	9820	12670	12650	02	460	02	500	0	500
0605 - 52353 - 0568	0.26	44.51	0.18	5250	5120	7810	7500	10650	10290	0	180	02	460	0	870
9150-58043-0340	0.06	43.21	0.09	6740	5760	9740	8140	12600	10560	2640	-90	2710	-90	2780	-140
1601 - 53115 - 0118	0.13	44.51	0.34	2190	2330	3650	3560	6780	5850	0	-50	290	0	950	370
0438-51884-0384	0.16	44.59	0.34	7140	6450	9910	9230	12680	11980	-150	230	0	270	0	270
2615 - 54483 - 0570	0.08	43.42	0.25	2040	1560	3210	2200	5990	4030	150	0	440	0	2340	1190
1220-52723-0089	0.29	44.91	1.09	7720	6940	10710	9860	13480	12690	-1600	0	-2260	0	-2840	0
0420-51871-0314	0.04	43.12	0.21	3210	2470	5540	5540	8170	9020	290	180	1020	1880	1310	2240
8513-57842-0615	0.32	44.80	0.15	5620	5030	8620	7550	11610	10430	360	270	730	060	800	1190
2773 - 54533 - 0640	0.21	44.52	0.44	3070	2520	6200	5040	9850	9020	290	140	1530	1010	1820	1510
2595 - 54207 - 0591	0.15	44.19	0.29	4670	3660	8170	6030	11530	9640	730	0	1020	00	1020	140
8066-57544-0839	0.17	43.98	0.29	3870	3470	5690	5120	7520	7170	220	0	580	00	950	140
8403-57834-0026	0.32	44.72	0.41	4230	5570	6270	7810	8680	10090	290	0	730	-50	1390	-50
1360-53033-0206	0.07	43.49	0.44	5910	5350	8030	7600	10300	06790	220	50	0	0	-70	0
0490-51929-0565	0.32	44.65	0.37	4600	4120	7590	6580	10810	10010	360	00	880	370	1020	060
0523 - 52026 - 0215	0.34	45.36	0.08	6120	5760	8670	8180	11230	10510	0	0	-70	50	0	0
5313 - 55973 - 0790	0.11	43.89	0.64	4960	5370	6860	7720	8900	10110	-150	2710	0	2850	0	2850
9577-57786-0573	0.08	43.97	0.39	8580	6610	11140	9360	13640	12350	3300	2290	3960	2660	4550	2710
10759 - 58526 - 0344	0.18	44.26	0.97	4810	4890	6560	0069	8450	8910	-150	50	0	50	0	50
1773 - 53112 - 0333	0.16	44.21	0.37	3070	2790	5330	4300	7890	7270	440	50	1240	180	1610	096

			Tabe	ла В.1	. – нас	тавак	са пре	ндохте	е стра	нице					
SDSS ID	~	$\lambda L_{_{E100}{ m \AA}}$	$R_{\rm FeII}$	FW_{-}	MM	FW	QM	FW	10M	z_5	0	z^2	5	z1	0
plate-MJD-fiber		ergs ⁻¹]		km	s^{-1}	[km:	s^{-1}	[km	s^{-1}	kms	;-1]	[kms	[-1]	[kms	-1-
ı		1 		H_{β}	${ m H}_{lpha}$	H_{β}	$H\alpha$	H_{β}	${ m H}_{lpha}$	H_{β}	H_{α}	\mathbf{H}_{eta}	H_{α}	${ m H}_{eta}$	\dot{H}_{α}
9208-57688-0698	0.17	44.49	0.30	6640	0669	9410	9860	12410	12740	1240	50	1530	0	1610	50
11340-58433-0576	0.25	44.50	0.94	3210	4020	4670	5670	0629	7360	150	0	290	0	1100	-50
6712 - 56421 - 0334	0.34	44.70	0.17	3650	3340	6500	5390	9780	8370	440	140	1390	550	1610	1230
0485 - 51909 - 0506	0.30	44.90	0.21	4530	6640	8320	9380	11530	12130	-1020	50	-1020	50	-1020	50
1703 - 53799 - 0275	0.07	43.31	0.77	2770	6310	5470	0006	9110	11740	-150	00	-1090	320	-1380	500
4526 - 55559 - 0260	0.19	44.33	0.56	3140	3120	4960	6280	7220	9360	20	640	290	2250	510	2480
8376-57786-0679	0.30	44.99	0.15	3500	3240	5980	4980	9340	8000	150	50	880	230	1460	780
8852-57449-0464	0.23	44.43	0.09	5330	4480	8390	6810	11380	9780	-510	-180	-660	-410	-580	-910
1227 - 52733 - 0029	0.09	43.94	0.33	6280	4670	8900	6590	11460	8550	0	0	0	0	02	50
9155 - 58043 - 0236	0.15	44.05	0.71	2630	3440	5030	6420	8680	9360	0	690	-220	2020	-220	2200
0285 - 51930 - 0280	0.26	44.71	0.18	6060	5860	8540	8240	11030	10620	02	00	20	0	02	0
0880 - 52367 - 0337	0.03	43.17	0.62	7110	960	10040	1370	13040	1780	-70	-50	-70	0	-150	-50
10276 - 58225 - 0308	0.14	43.57	1.70	4230	3860	7660	5600	11080	7440	-580	2020	-1090	2750	-1170	3030
6378 - 56330 - 0381	0.13	43.97	0.32	6010	5710	8720	8090	11650	10470	2640	-50	3300	-50	3300	-50
9179 - 57682 - 0378	0.27	44.46	0.54	0629	5670	9630	7950	12480	10330	099	0	730	0	800	0
6791 - 56429 - 0346	0.21	44.33	0.12	5770	5080	8840	7550	11990	10480	099	230	1540	590	2630	1050
0544- 52201 - 0344	0.03	42.91	1.78	6950	3430	9950	4900	12870	6270	02	50	150	50	150	50
7586-57186-0489	0.17	44.30	0.45	3130	3980	5530	6040	7710	9010	-1530	140	-1890	550	-1890	1880
7885-57336-0986	0.14	44.17	0.29	5470	4800	7730	7140	0666	9430	02-	140	0	180	-70	180
8427-57846-0794	0.38	44.70	0.40	5910	5300	8820	7860	11670	10700	510	270	1090	640	1750	1100
0549 - 51981 - 0183	0.05	42.67	0.49	3660	3470	5710	4940	7610	6400	1610	0	1610	0	1610	0
8224-57378-0023	0.28	44.45	0.55	4590	4210	6490	6450	8380	9550	02	00	20	230	20	410
7906-57333-0617	0.13	43.94	0.16	6430	4620	9930	7270	12920	10430	1170	230	2480	0690	3430	1100
0542 - 51993 - 0581	0.18	43.92	0.36	5190	3020	8120	4200	10900	5440	3000	0	3140	0	3140	-50
0714-52201-0112	0.38	44.69	0.23	3790	5030	6050	7310	9190	9820	150	00	360	270	730	500
10256 - 58193 - 0941	0.25	44.32	0.85	2410	1970	4230	5460	7590	9590	02	140	290	2160	580	2340
8291-57391-0871	0.21	44.68	0.63	5240	5890	7430	8360	9610	10780	0	-50	0	-50	0	0
2229- 53823 - 0233	0.23	44.40	0.64	6570	6500	9420	9250	12200	12080	290	180	510	370	800	640
9390-58103-0001	0.16	44.52	0.52	3430	2740	7080	4300	10150	7500	510	0	2700	00	3580	640
1440-53084-0204	0.15	44.56	0.76	5470	6220	7800	8780	10130	11330	-70	0	-70	0	-70	0
1395 - 52825 - 0260	0.32	44.97	0.32	3650	4490	5840	7000	8680	10110	0	180	150	590	220	1140

			Tabe	ла В.1	. – нас	тавак	ca пре	ндохте	е стра	нице					
SDSS ID	~	$\lambda L_{\rm E100\mathring{A}}$	$R_{ m FeII}$	FW.	HM	FW	QM	FW_{c}	10M	z_5	0	z^2	5	z1	0
plate-MJD-fiber		$\left[ergs^{-1} \right]$		[km	s^{-1}	[km	s^{-1}	[km	3-1]	[kms	-1]	[kms	5-1]	[kms	-1-
I		1 		H_{β}	H_{α}	$\mathrm{H}^{\mathrm{H}}_{eta}$	$H\alpha$	$\mathrm{H}^{\mathrm{H}}_{eta}$	H_{α}	\mathbf{H}_{eta}	H_{α}	\mathbf{H}_{eta}	H_{α}	${\rm H}_{eta}$	\dot{H}_{α}
0355-51788-0414	0.09	44.00	0.50	3060	4160	5250	6350	8900	8910	0	50	580	50	1460	140
4213 - 55449 - 0777	0.06	43.20	0.42	4160	3110	6720	4480	9930	5940	220	0	1020	00	1900	270
8734-57642-0246	0.16	43.80	0.30	3870	2880	5470	4290	7080	6350	20	-50	20	-90	20	-320
$1744 extsf{-}53055 extsf{-}0372$	0.04	42.93	1.11	5320	5350	7510	7550	9840	9740	-70	50	-70	50	-70	50
9589 - 57813 - 0372	0.16	43.96	0.07	3940	5030	5610	7130	7220	9190	0	0	20	0	20	50
2652 - 54508 - 0476	0.09	43.68	0.13	5690	6950	9050	9880	12110	12710	290	0	290	0	290	0
2768 - 54265 - 0520	0.05	42.68	0.46	1680	1650	2770	2240	5910	2880	-70	-180	-290	-230	-1100	-320
8288-57419-0863	0.16	43.76	0.72	2120	3160	3580	5170	5690	8690	20	140	20	069	150	2380
2525 - 54569 - 0308	0.16	44.22	0.43	4380	3480	7010	6140	9570	8750	580	460	1610	1650	2260	2340
2162 - 54207 - 0140	0.22	44.82	0.87	5400	4210	7950	6680	10800	9840	-150	180	-360	640	-580	1330
2505 - 53856 - 0563	0.18	44.32	0.73	3060	3630	5330	0029	8390	9640	0	1420	20	3120	20	3400
1653 - 53534 - 0515	0.23	44.59	0.45	5400	4340	8020	0299	10790	9780	150	50	440	00	730	180
9420-57715-0024	0.39	44.87	0.55	3940	3890	6280	6230	9130	9160	290	140	580	550	950	820
8875-57779-0380	0.28	44.55	0.26	2000	6900	9840	9780	12830	12610	150	50	360	00	580	180
11109-58523-0450	0.18	44.05	0.10	4010	4250	6050	6310	8610	8690	20	140	220	460	440	1100
1819 - 54540 - 0140	0.17	44.38	0.22	4520	4800	6780	7130	9410	9920	150	230	360	550	660	1230
2033-53476-0512	0.28	44.97	0.43	3360	3520	6200	6130	9640	9610	290	230	1530	1190	2480	2010
8362 - 57732 - 0918	0.12	43.57	0.77	5030	3930	7510	5850	10200	8080	220	00	510	270	880	500
1943-53386-0466	0.13	44.11	0.36	0629	5490	0026	8100	12480	10890	1240	370	1970	780	2550	1370
2142-54208-0637	0.06	43.93	1.21	7310	4390	10090	6220	12870	8010	290	0	150	0	0	-50
9214-57684-0440	0.24	44.48	0.22	5770	4030	7810	6860	10070	10430	220	180	20	640	0	820
0607 - 52368 - 0625	0.28	44.75	0.43	2340	2380	3800	3660	6350	6360	150	00	440	180	950	1420
1735 - 53035 - 0557	0.39	44.98	0.27	4090	4800	7520	7500	10800	10700	290	140	660	270	580	370
1223 - 52781 - 0471	0.05	43.04	1.79	4240	3020	6790	4720	10150	6640	150	270	510	009	800	780
7318-56990-0036	0.33	44.64	0.66	3930	4850	6330	6860	8510	8870	-1600	0	-1670	0	-1670	0
6464 - 56309 - 0450	0.19	44.02	0.14	3210	3650	4960	5350	2000	7360	150	0	440	50	730	140
2213 - 53792 - 0629	0.02	41.74	0.00	1670	4620	2400	6550	3120	8380	20	-50	20	-50	20	-50
0644-52173-0202	0.12	43.49	1.35	5200	5210	7260	7410	9380	9600	3150	0	3300	0	3220	0
7339-56772-0577	0.17	43.70	0.34	3510	2430	6210	4530	9200	6770	440	320	1680	1050	2780	1190
7865-56955-0371	0.36	44.60	0.06	3940	3480	7660	5810	11100	9560	-150	0	-220	-140	-150	-230
8497-58161-0202	0.25	44.62	0.55	2550	3060	4310	4800	7370	8000	70	50	360	140	1100	0690

			Tabe	ла В.1	. – нас	Tabak	са пре	ндохте	е стра	нице					
SDSS ID	~	$\lambda L_{_{E100}{ m \AA}}$	$R_{\rm FeII}$	FW	HM	FW_{i}	QM	FW	10M	z_5	0	z2	ល	z1	0
plate-MJD-fiber		$[ergs^{-1}]$		km	s^{-1}	<u>lkm</u>	\mathbf{s}^{-1}	[km	\mathbf{s}^{-1}	kms	5-1]	[kms	5-1]	[kms	-1-
I		1 		${\rm H}_{eta}$	H^{α}	H_{β}	$H\alpha$	H_{β}	${ m H}_{lpha}$	H_{β}	H_{α}	\mathbf{H}_{eta}	H_{α}	\mathbf{H}_{eta}	\dot{H}_{α}
7704-57572-0399	0.12	43.63	0.51	3060	4430	4820	6260	8170	8090	0	-50	0	-50	150	-50
2419-54139-0357	0.05	42.78	0.31	9430	7630	11050	11210	12740	13960	5600	2940	5600	4690	5670	5600
8434-57484-0311	0.22	44.57	0.27	4520	4430	6190	6940	7940	10100	-150	230	20	550	20	870
0349 - 51699 - 0492	0.28	44.35	0.56	2920	5440	4960	7680	7880	0960	150	-50	580	0	1170	0
4230-55483-0082	0.27	44.76	0.94	4090	3210	7310	6700	10680	10000	580	830	1460	2570	1610	2750
7656 - 57338 - 0008	0.37	44.90	0.08	6940	6950	9860	9880	12640	12710	02	0	20	0	20	0
8059-57895-0722	0.26	44.32	0.30	4890	3880	7220	6260	9490	9500	1240	140	1680	780	1900	1640
8760-57672-0398	0.13	43.80	0.35	4370	3520	6050	5300	7800	7400	-150	50	-70	180	-70	270
7687 - 57007 - 0974	0.07	43.54	0.45	2920	2250	4380	6060	6200	8630	0	230	150	3030	510	4220
7421- 57159 - 0320	0.16	44.20	0.44	3070	2610	5620	3980	8760	6860	290	50	1100	140	1310	550
0299-51671-0251	0.39	45.07	0.28	3360	3060	5400	4890	8250	8370	150	50	580	320	1100	1330
1997 - 53442 - 0126	0.04	43.10	0.01	8810	7360	10720	10420	12620	13340	3380	-230	3230	-370	2940	-550
0530-52026-0165	0.03	43.14	0.00	4810	5290	6850	7660	8890	10170	0	-360	0	-730	0	-1230
7871 - 56902 - 0610	0.11	43.49	0.15	2560	2380	4090	3480	7370	5170	02	0	150	0	510	50
8427-57846-0079	0.15	44.20	0.60	4010	4390	6350	6590	8980	9420	220	180	510	550	510	1370
2101 - 53858 - 0063	0.02	41.69	0.00	2120	2010	2990	2970	3800	4020	02	0	20	50	0	00
7284-56683-0383	0.26	44.66	0.27	5610	4890	7950	0069	10280	8910	02	50	20	50	20	50
8417-58175-0420	0.32	44.59	0.76	4160	3440	6570	5910	9710	8430	02	500	290	1420	510	1920
2004-53737-0188	0.39	45.24	0.04	5690	5390	8100	7590	10440	9870	0	0	-70	0	-70	0
8535-58019-0848	0.17	44.01	0.30	2260	6080	4450	8690	6920	11390	02-	140	-800	180	-950	320
7627 - 56933 - 0226	0.16	44.01	0.35	3940	4980	6120	7400	8890	10230	150	50	290	180	440	270
8378-57785-0916	0.33	44.45	0.22	5600	4830	8370	7250	11430	10120	360	0	950	50	1820	00
9172-58015-0759	0.11	43.82	0.55	3360	3020	5040	4620	6650	6910	1170	00	1240	230	1240	780
7885-57336-0836	0.36	44.56	0.29	4230	4520	7000	6760	10430	9590	0	50	0	180	-70	460
11314 - 58436 - 0546	0.35	44.83	0.44	4160	5440	7150	7730	0220	10020	-360	50	-440	50	-440	50
5870 - 56065 - 0802	0.07	43.31	0.95	3500	3890	5470	5900	7880	8970	150	230	360	069	440	2100
1796-53884-0250	0.35	44.64	0.32	5760	5480	8680	8270	11530	11200	360	460	510	1050	580	1600
2355 - 53792 - 0105	0.06	43.39	0.16	5040	4210	7230	6260	9490	8870	220	0	510	50	730	00
7296-57046-0780	0.30	44.30	0.14	7810	7000	11020	9930	14080	12810	-20	50	-70	50	-70	0
8179-57429-0024	0.33	44.68	0.31	1890	3610	4150	5530	6270	8320	-150	50	-510	230	-440	820
2105 - 53472 - 0188	0.06	43.15	0.00	7190	3060	9840	4520	12700	5800	290	50	0	140	-70	140

			Tabe	ла В.1	. – нас	тавак	ca np(ндохте	e crpa	нице					
SDSS ID	*	$\lambda L_{ m gamma100{}\circ}$	$R_{\rm FeII}$	FW_{-}	MM	FW_{i}	QM	FW^{-}	M01	z_5	0	z^2	5	z1	0
plate-MJD-fiber		$\left[ergs^{-1} \right]$		km	s^{-1}	km	s^{-1}	km	3-1]	kms	3-1]	kms	s ⁻¹]	[kms	-1-
		ר ו י		${\rm H}_{eta}$	$\vec{\mathrm{H}}_{lpha}$	H_{eta}	$\vec{\mathrm{H}}_{lpha}$	${ m H}_{eta}$	H_{α}	H_{β}	H_{α}	$\mathbf{H}_{\boldsymbol{\beta}}$	H_{α}	${ m H}_{eta}$	\dot{H}_{α}
4053 - 55591 - 0038	0.02	42.09	0.00	4310	3570	7020	5500	9580	8560	510	90	1610	180	2410	410
8416-57894-0237	0.36	44.75	0.30	6060	5300	8980	7860	11830	10790	800	270	1530	730	2190	1280
2293 - 53730 - 0278	0.03	42.51	0.00	4440	7030	7200	10000	9680	12870	-220	0	-220	50	-220	0
3155 - 54829 - 0362	0.25	44.35	0.63	6560	5660	9630	8220	12540	10920	580	180	1170	370	1750	590
7419-56811-0620	0.37	45.00	0.57	2260	5400	5540	7640	8380	9880	-220	0	-730	50	-800	0
$1744 extsf{-}53055 extsf{-}0630$	0.24	44.94	1.05	5680	8900	8960	11360	12020	13670	-440	-2000	-360	-1540	-360	-950
7416-56810-0331	0.15	43.90	1.12	4670	3070	6710	4720	8610	8530	0	140	0	009	0	3120
2147 - 53491 - 0162	0.12	44.33	0.24	4670	4480	6930	6350	9930	8180	150	0	360	-50	730	-50
2506-54179-0009	0.37	44.93	0.17	4300	3930	6560	6620	9190	9910	360	270	880	1050	1460	1690
2656 - 54484 - 0131	0.05	43.13	1.49	3510	2380	5550	5270	7300	8250	580	180	1460	1880	2040	2570
6408 - 56329 - 0576	0.39	43.95	0.27	3720	4340	6780	6490	10430	9050	-70	50	-360	00	-360	00
2119 - 53792 - 0479	0.16	44.43	0.21	3940	4430	6340	6810	9480	9690	0	-50	-70	-50	-150	0
2246-53767-0501	0.06	42.56	1.42	5770	2880	8250	4070	10590	5260	-70	50	-70	50	-70	50
9577 - 57786 - 0568	0.22	44.48	0.08	3500	3200	5770	4980	9410	8090	-150	0	-360	-140	-660	-590
2233-53845-0594	0.10	43.86	0.56	6940	6170	9860	8870	12710	11570	02	50	70	180	0	320
1997 - 53442 - 0059	0.29	44.48	1.10	5470	3890	7800	6640	10060	10110	-70	320	-70	1140	0	1690
11069-58456-0356	0.34	44.46	0.35	2920	2650	4740	3980	7440	6130	150	0	099	50	1610	550
8525-57900-0882	0.34	45.04	0.79	5630	5350	8330	7590	11030	9830	1530	50	2190	0	2410	50
7418-57165-0978	0.39	44.79	0.25	6560	5600	9330	8210	12030	10780	0	2480	0	2520	20	2520
11063 - 58426 - 0664	0.13	43.79	0.67	2700	2380	4450	4350	7080	6500	20	270	360	090	660	1280
8514 - 58174 - 0532	0.20	44.60	0.91	4520	2650	6270	4020	8160	6440	-150	0	0	00	0	590
11375 - 58426 - 0361	0.34	44.70	0.78	3280	3750	5180	5670	8900	8680	220	00	800	370	2920	1190
9356 - 57809 - 0210	0.18	43.59	1.51	6940	2750	0626	4030	12720	5680	02-	0	0	180	0	730
9614 - 57835 - 0391	0.27	44.63	1.03	3210	4800	5330	6810	8830	8770	150	50	800	50	2850	0
8183-57375-0758	0.35	44.80	0.81	5030	5680	7150	7920	9190	10170	02	00	0	50	0	0
11295 - 58456 - 0402	0.27	44.36	0.77	3930	4340	5750	6120	7580	7950	-1160	50	-1240	0	-1160	0
1059-52618-0453	0.34	44.82	0.27	4380	3840	7000	6170	9920	8870	290	180	880	500	1170	730
7059-56592-0922	0.39	44.73	0.06	6560	6030	9330	8590	12100	11280	0	-90	-150	-180	-150	-320
1058 - 52520 - 0379	0.20	44.76	0.60	2700	5710	4820	7990	7740	10370	220	50	880	50	1610	50
10751-58220-0682	0.11	44.02	0.56	3720	5810	6420	8280	9920	10700	220	50	880	50	1310	00
8390-57485-0804	0.22	44.57	0.23	5190	3660	8260	6450	11040	9010	950	370	950	500	950	500

			Tabe	ла В.1	. – нас	тавак	са пре	ндохте	е стра	нице					
SDSS ID	8	$\lambda L_{\epsilon_{100}{\rm \AA}}$	$R_{\rm FeII}$	FW.	MM	FW	QM	FW	10M	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0	z^2	ň	z1	0
plate-MJD-fiber		$\left[ergs^{-1} \right]$		[km;	s^{-1}	[km	\mathbf{s}^{-1}	[km	\mathbf{s}^{-1}	[km	s^{-1}	[kms	5-1]	[kms	-1-
1		י י		${\rm H}_{eta}$	H^{α}	H_{β}	H_{α}	H_{β}	H_{α}	$\mathbf{H}_{\boldsymbol{\beta}}$	H_{α}	$\mathbf{H}_{\boldsymbol{\beta}}$	H_{α}	\mathbf{H}_{eta}	\dot{H}_{α}
7103-56661-0476	0.20	44.10	0.24	7010	7220	9930	10230	12850	13160	0	0	0	90	0	180
1197 - 52668 - 0052	0.06	43.31	0.25	3360	2740	5330	4710	7740	7320	290	180	099	069	880	1280
10265 - 58512 - 0587	0.35	44.99	0.39	3060	2650	4960	4070	8100	6580	0	0	150	-50	510	-270
0726 - 52226 - 0539	0.16	44.13	0.39	5040	3520	7450	5580	0626	7640	950	320	1020	460	1020	500
0490-51929-0412	0.34	44.56	0.45	4450	3700	2000	6170	9340	9640	660	140	730	060	730	1330
8228-57423-0282	0.15	43.89	1.03	6930	5260	9850	7450	12700	9650	20	-50	02	-50	0	-50
0312 - 51689 - 0471	0.05	43.00	0.66	5260	0629	8620	9610	11830	12390	-1320	-50	-1320	-50	-1320	0
8838-57870-0682	0.27	44.26	0.43	2190	2190	3580	3290	6060	4940	0	0	220	0	950	180
9360-58055-0221	0.35	44.66	0.11	3210	4880	5250	6980	7800	9040	150	-50	580	-50	1090	-90
0919-52409-0023	0.08	43.38	1.64	7320	3720	10460	5280	13680	6790	150	50	370	50	660	0
2755-54507-0376	0.08	43.89	0.26	6060	5530	8690	7910	11170	10200	-70	-50	-70	-50	-70	-50
2160-53885-0243	0.17	44.28	0.36	2690	3240	5100	4930	7280	7630	-800	50	-1020	00	-1020	500
2161 - 53878 - 0557	0.25	44.62	0.88	3870	4340	7080	6490	10580	9050	360	230	1100	550	1240	1190
2097 - 53491 - 0582	0.07	43.16	0.27	2700	2240	4230	3250	7810	4300	20	50	440	50	2550	00
11352 - 58456 - 0182	0.36	44.61	0.38	3500	4890	5470	7220	8020	9870	0	-50	02	-90	150	-180
11047 - 58424 - 0120	0.24	44.71	0.27	5860	5000	8720	7980	11580	11010	2050	1150	3000	2020	3370	2290
0451 - 51908 - 0133	0.12	44.50	0.19	4670	3840	7080	5860	9350	8740	290	00	220	270	290	780
7315 - 56685 - 0219	0.33	44.80	0.42	3140	4300	5110	6680	7730	9520	-70	270	-150	730	-290	1100
7339-56722-0727	0.16	43.87	0.67	1970	1780	3210	2790	6060	4340	20	50	150	50	360	50
8738-57402-0859	0.14	43.86	0.25	5330	4210	7450	6410	9490	8650	660	370	880	820	1020	1240
7102-56666-0914	0.19	44.59	0.27	6780	6240	9480	8840	12250	11440	-70	-1870	0	-1910	0	-1960
11047 - 58424 - 0414	0.34	44.75	0.14	3360	3340	6350	5300	9280	8640	730	50	1390	180	1390	690
0845-52381-0447	0.08	43.47	0.52	3650	3300	5620	5770	8170	8390	0	370	-70	1280	-150	1700
11318-58419-0982	0.09	43.81	0.11	4080	5490	7070	7910	10350	10250	-290	0	-1090	50	-1460	00
0351 - 51695 - 0493	0.08	43.39	0.00	4450	5600	6200	7760	7580	10100	-510	2110	-510	2430	-290	2480
1776 - 53858 - 0612	0.13	44.35	1.08	2340	1920	3360	2880	5330	5300	0	0	150	-50	1100	-730
8278-56990-0228	0.22	43.61	0.57	2990	2430	5400	4590	8620	8160	-70	50	0	730	0	1190
11068 - 58488 - 0697	0.34	44.57	0.26	3070	3020	5620	4750	8610	7950	290	90	1100	270	1310	910
0615 - 52347 - 0108	0.03	43.53	0.28	5400	4440	7590	6310	9780	8180	0	-50	0	0	0	-50
2947 - 54533 - 0251	0.21	44.22	0.62	2920	3980	5030	6130	7800	8820	0	230	220	640	220	1330
6498 - 56565 - 0347	0.03	43.03	0.00	1020	6560	1460	9340	1900	11980	0	0	0	50	0	50

			Tabe	ла В.1	. – нас	тавак	са пре	ндохте	е стра	нице					
SDSS ID	~	$\lambda L_{\epsilon_{100}{\rm \AA}}$	$R_{\rm FeII}$	FW	MM	FW	QM	FW	10M	z_5	0	z^2	ល	z1	0
plate-MJD-fiber		$\left[ergs^{-1} \right]$		km	s^{-1}	[km:	\mathbf{s}^{-1}	[km:	\mathbf{s}^{-1}	kms	3-1]	[kms]	5-1]	[kms	5-1]
1		ר) י		${\rm H}_{eta}$	H_{α}	$\mathbf{H}_{\boldsymbol{\beta}}$	H_{α}	$\mathbf{H}_{\boldsymbol{\beta}}$	$\dot{\mathrm{H}}_{lpha}$	${ m H}_{eta}$	H_{α}	${ m H}_{eta}$	H_{α}	${ m H}_{eta}$	\dot{H}_{α}
6025 - 56098 - 0621	0.27	44.26	0.10	9930	9450	12540	12280	15010	14890	-2540	-50	-2100	230	-1670	550
2794-54537-0483	0.13	43.92	0.28	3130	4430	5970	6300	8440	8310	360	50	440	00	440	180
0350-51691-0442	0.29	44.59	0.99	5330	4210	7880	6770	10510	10240	800	0	1310	0	1460	0
1224-52765-0412	0.17	44.46	0.49	3210	3160	5110	5910	7590	8840	150	320	440	1510	1020	1970
2488-54149-0308	0.07	43.56	0.72	4240	4570	6070	6490	7970	8370	1460	0	1540	0	1540	50
0525 - 52295 - 0091	0.03	42.01	0.75	2710	1150	3660	1830	4680	6330	1240	50	1460	180	1610	2660
8276-57067-0795	0.19	44.73	0.18	3940	3660	7000	5900	10650	9320	150	00	440	320	440	730
0762 - 52232 - 0498	0.25	45.27	0.17	4090	3570	6640	5620	9410	8960	290	00	800	320	950	910
1444-53054-0202	0.11	44.40	0.53	3430	2650	5040	3980	6720	6030	950	0	1100	50	1170	370
6471 - 56309 - 0794	0.33	44.52	0.95	6120	5670	8900	8270	11670	11060	290	180	580	410	880	730
1974 - 53430 - 0174	0.29	44.55	55.06	1090	6940	1530	9860	1970	12730	70	0	70	0	20	50
1047 - 52733 - 0300	0.04	43.25	0.10	4740	4620	6780	6580	8390	8460	-360	-50	-510	-90	-360	-50
2762 - 54533 - 0005	0.05	43.06	0.37	2620	5070	4370	7220	0029	9270	150	50	440	0	730	50
9362 - 57801 - 0772	0.13	43.91	0.20	6400	6110	9240	8660	12010	11260	290	00	099	00	1090	140
10742-58198-0412	0.39	44.95	0.26	3870	3570	6650	5810	9570	8920	20	00	360	140	360	230
1305-52757-0548	0.14	44.25	0.28	2700	2380	5110	3610	8830	6400	220	0	1020	50	1680	460
9626-57875-0864	0.40	44.49	0.83	3580	3790	6570	5990	10210	9230	360	140	1170	320	1310	820
0837 - 52642 - 0059	0.11	43.82	0.54	6930	5480	9850	7990	12690	10640	-70	-90	-70	-230	0	-410
8738-57402-0757	0.32	44.36	0.31	4820	4200	7000	6260	9410	8730	150	0	290	-50	660	-140
7407-56772-0164	0.32	44.83	0.08	4680	4940	7230	7000	9720	9010	880	0	1100	50	1100	50
7752-58072-0237	0.28	44.86	0.25	6500	5680	9500	8420	12490	11080	1100	920	1020	1010	1100	1010
0535 - 51999 - 0582	0.30	44.47	0.46	2410	2510	4450	3970	7950	0669	-70	-50	20	-50	220	-140
2129- 54252 - 0420	0.39	45.13	0.49	2700	2970	4520	4520	7150	6580	20	50	290	140	580	270
10655-58172-0299	0.26	44.25	0.22	4300	3290	6570	5350	9050	8320	360	180	880	590	1460	1280
2781 - 54266 - 0369	0.08	43.23	1.48	4380	3700	6200	5390	7960	0277	0	50	-70	270	-70	1100
0542 - 51993 - 0560	0.13	44.05	0.65	3060	4530	5400	7000	8460	10110	0	140	0	410	0	780
2770-54510-0433	0.20	44.86	0.49	2410	2420	4090	3660	7660	5900	70	-50	440	0	1100	230
8283-57064-0554	0.32	44.41	0.83	3800	3980	6570	6680	10220	9650	0	140	150	370	150	410
11337 - 58431 - 0258	0.23	44.39	0.15	4740	4300	7450	6910	10580	10290	220	180	580	500	800	780
1232-52731-0417	0.24	44.73	0.11	4890	4480	8180	6450	11250	8780	660	00	730	230	730	730
11062 - 58509 - 0325	0.12	43.66	0.98	2410	1970	3500	3160	5040	5860	20	50	150	50	099	180

			Tabe	ла В.1	– нас	тавак	ca npe	ндохте	е стра	нице					
SDSS ID	8	$\lambda L_{\mathrm{E100}\mathrm{\AA}}$	$R_{\rm FeII}$	FW	MM	FW_{-}	QM	FW	10M	z_5	0	z2	ល	z1	0
plate-MJD-fiber		ergs ⁻¹]		km	s^{-1}	[km	s^{-1}	[km	s^{-1}	kms	5-1]	[kms	5-1]	[kms	- <u>-</u> -
		ר) י		${\rm H}_{eta}$	H_{α}	H_{β}	$\dot{\mathrm{H}}_{lpha}$	H_{β}	$\vec{\mathrm{H}}_{lpha}$	$\mathbf{H}_{\boldsymbol{\beta}}$	H_{α}	\mathbf{H}_{eta}	H_{α}	${ m H}_{eta}$	\dot{H}_{α}
10750-58199-0666	0.15	43.93	0.27	3720	3250	5470	4750	7370	6860	02	-50	220	0	510	90
4505 - 55603 - 0888	0.28	44.49	0.25	4740	5490	7730	7730	10500	10020	-800	0	-880	50	-880	50
0462 - 51909 - 0133	0.22	44.39	0.30	5690	5750	8310	8220	11080	10820	290	180	580	370	1020	680
8515-58192-0779	0.25	44.54	0.02	5480	5590	8110	8200	11110	10940	-70	-180	-220	-320	-290	-600
4312 - 55511 - 0732	0.06	43.19	0.19	2260	2060	3290	3070	4460	4900	-70	50	02	50	220	140
7701-57356-0278	0.33	44.71	0.33	3210	5130	5540	7780	8900	10760	-150	270	-440	730	-580	1050
2016-53799-0061	0.18	44.96	0.26	5250	4570	8380	7080	11300	10140	440	00	510	320	510	550
7184 - 56629 - 0074	0.36	44.93	0.13	7220	6660	10210	9540	13190	12320	02	-730	0	-1230	02	-1640
1713 - 53827 - 0082	0.39	44.94	0.42	2040	1830	3360	3110	5690	4850	0	00	150	00	730	180
7845-56980-0742	0.33	45.32	0.14	6640	5980	9410	8450	12180	10920	20	-50	02	-50	20	-50
8869-57481-0046	0.31	45.03	0.06	6560	6370	9470	9490	12390	12430	-1310	1970	-1310	1970	-1310	1970
1625 - 53140 - 0134	0.08	43.49	0.91	3790	5350	6130	7820	8900	10600	150	230	290	590	440	1280
4364 - 55855 - 0382	0.07	43.07	0.46	5980	4850	8090	7130	10280	9650	-290	0	02-	0	20	50
7617 - 56949 - 0048	0.31	44.20	0.23	3720	4480	5830	6630	8820	0006	-70	270	0	590	-70	870
7427-56751-0151	0.39	44.82	0.84	3210	3250	5250	5220	7520	8780	0	50	0	370	20	1100
0494 - 51915 - 0271	0.15	43.56	0.53	5180	3980	7660	6360	10580	9190	02	230	220	069	360	1050
6430-56299-0516	0.18	45.20	0.40	5180	5210	7290	7450	9620	9920	-70	00	-150	230	-290	500
10269 - 58220 - 0750	0.39	44.96	0.85	5420	5580	7910	7860	10260	10200	2780	0	2780	0	2780	-50
7760-58080-0103	0.11	43.51	0.25	2770	4300	4450	6400	6420	8690	0	0	-70	00	-150	180
2649 - 54212 - 0215	0.13	44.48	0.22	5770	5990	8760	8460	11540	10930	02	-50	0	-50	0	-50
1811 - 53533 - 0122	0.23	44.56	0.33	4740	5170	6780	7820	8750	10740	02	140	02	410	150	690
2168 - 53886 - 0484	0.26	45.18	0.08	6780	6720	0026	9460	12470	12200	02	50	20	50	02	50
2612 - 54480 - 0330	0.33	45.14	1.25	5980	6670	8460	9460	10940	12200	0	0	0	-50	0	-50
8371-57751-0223	0.23	43.96	0.10	3500	3250	5180	5350	6640	7590	880	320	1530	060	1970	1460
7320-56722-0814	0.30	44.34	1.05	3070	2470	5470	4080	9420	8020	0	00	-360	500	-660	2700
8187-57423-0084	0.40	44.72	0.42	5190	4660	7820	6670	10450	8590	1830	0	1970	0	1970	0
7583-56958-0818	0.15	43.59	0.34	1900	1780	2920	2610	5250	3800	0	50	290	50	1750	320
2164 - 53886 - 0457	0.05	43.37	0.62	4020	4030	6280	6550	8760	9760	360	270	1020	1050	2040	2060
1685 - 53463 - 0260	0.25	44.81	0.08	5330	5300	8170	7540	11090	9730	360	0	580	50	580	50
7405-57134-0712	0.33	44.71	0.09	4090	3840	6490	5710	8760	8320	440	180	1240	410	2040	1280
10247 - 58162 - 0834	0.13	43.74	0.00	5250	5570	7510	7900	9690	10270	0	-90	02-	-230	-70	-320
			Tabe	ла В.1	– нас	тавак	са пре	етходн	е стра	нице					
------------------------	------	------------------------------------	----------------	-----------------	-----------------	----------------------	--------------	-------------	-----------------	--------------------	--------------	--------------------	--------------	----------------	--------------------
SDSS ID	~	$\lambda L_{\rm E100\mathring{A}}$	$R_{\rm FeII}$	FW_{-}	MM	FW	QM	FW	10M	z5	0	z_{2}	5	z1	0
plate-MJD-fiber		$\left[ergs^{-1} \right]$		km	s^{-1}	[km	s^{-1}	[km	s^{-1}	kms	[-1]	[kms	-1-	[kms	- <u>-</u> -
		1 		${\rm H}_{eta}$	${ m H}_{lpha}$	H_{β}	H_{α}	H_{β}	${ m H}_{lpha}$	\mathbf{H}_{eta}	H_{α}	\mathbf{H}_{eta}	H_{α}	${ m H}_{eta}$	\dot{H}_{α}
9557-58098-0956	0.33	44.51	1.77	6140	4720	8690	7840	11400	10770	150	690	220	1970	290	2890
8159-57064-0647	0.23	44.12	0.75	3790	3930	6130	5580	9630	7180	0	0	0	0	0	-50
3609 - 55201 - 0610	0.36	44.46	0.03	3650	3110	5770	4710	8910	7270	0	0	-70	50	-290	230
8877-57782-0602	0.17	43.94	0.18	4010	3570	6060	5260	8320	7410	02	0	220	50	440	180
7652-57579-0414	0.07	43.32	0.68	2410	5650	3570	7310	4890	9010	-70	3360	-220	4090	-360	4690
8374-57783-0311	0.32	44.81	0.17	5250	3980	8310	6580	11450	10150	580	50	1750	270	2990	460
6751 - 56368 - 0946	0.07	44.14	0.20	5980	4710	8890	7590	11810	10700	730	500	1170	1100	1460	1370
9210-57656-0518	0.39	44.64	0.72	4380	3430	6500	5260	8980	7770	0	-50	02	-140	02	-270
8201-58146-0997	0.12	44.02	0.61	2550	4250	4810	6260	6840	8550	-800	140	-1160	320	-1160	690
7339-56722-0826	0.19	43.65	0.49	2340	2330	3650	3520	5550	5850	0	50	150	140	290	910
0270 - 51909 - 0537	0.18	44.56	0.51	6640	5170	9410	7870	12190	10980	02	140	220	370	360	460
0902 - 52409 - 0134	0.06	43.32	0.70	2700	2650	4820	3890	9120	5530	02	00	290	140	510	500
4206-55471-0864	0.09	43.61	0.43	3950	3890	0209	5760	8110	7730	1610	140	1680	270	1680	410
7865 - 56955 - 0894	0.04	42.50	0.21	2410	1510	3720	2570	5990	6830	20	140	360	370	1750	3160
11401 - 58491 - 0331	0.21	44.44	0.17	3140	2840	5480	4300	0000	6630	220	0	950	00	2040	690
8307-57723-0218	0.33	44.49	0.28	4010	3380	6640	5260	9410	8460	800	00	1680	320	1820	1050
6496-56363-0206	0.04	42.99	0.94	6790	1700	9590	2430	12390	3310	0	-50	0	50	0	180
9217 - 57934 - 0839	0.36	44.59	0.19	3210	4120	5180	6820	8240	10070	150	370	360	1050	660	1470
10654 - 58429 - 0249	0.17	44.20	0.39	4300	4800	6710	0669	9920	9410	-70	-50	-290	-50	-580	-90
9145-58041-0626	0.27	44.43	1.00	4600	3160	6060	4800	7450	6720	1240	140	1530	320	1750	690
9403 - 58018 - 0020	0.26	44.50	0.99	5550	3940	7810	5680	10080	7370	0	00	20	270	0	410
6380 - 56340 - 0196	0.18	44.28	0.28	10580	9480	14060	12850	17250	16040	-2610	-360	-3040	-460	-3330	-460
7682 - 57415 - 0430	0.07	42.39	0.37	1390	1190	2410	1970	3790	3380	02	0	360	140	580	370
7404-56776-0518	0.15	44.07	0.06	4970	4210	7380	6500	10300	9250	150	270	510	640	1530	1010
9406-58067-0648	0.36	44.73	0.45	2840	3880	4740	6030	7360	9140	20	50	20	270	20	640
7744-58396-0130	0.08	43.45	0.76	2410	3430	3720	5210	5770	7270	20	140	360	460	1240	096
0774 - 52286 - 0283	0.15	44.13	0.48	4300	4300	5830	7230	7430	10120	-220	640	0	1830	0	2430
5429- 55979 - 0766	0.05	42.87	0.21	6730	2460	7160	3550	7590	4600	-5710	0	-5710	00	-5710	140
1205 - 52670 - 0493	0.14	43.94	1.01	4670	4250	7230	6450	10370	9470	0	50	-70	140	0	320
7891-57332-0728	0.16	43.80	0.19	3950	4760	6430	6450	8700	8280	1020	270	1020	50	1100	50
9562 - 57817 - 0802	0.20	44.26	0.17	5190	5120	8470	7270	11690	9380	510	0	730	50	730	50

			Tabe	ла В.1	– нас	тавак	са пре	ндохте	е стра	нице					
SDSS ID	~	$\lambda L_{_{E100}{ m \mathring{A}}}$	$R_{\rm FeII}$	FW_{-}	MM	FW_{i}	QM	FW	10M	\$ \$	0	z2	5	z1	0
plate-MJD-fiber		ergs ⁻¹]		km	s^{-1}	km	s^{-1}	[km:	s^{-1}	km	9 ⁻¹	[kms	9 ⁻¹	[kms	-1-
		י) י		H_{eta}	H_{α}	${ m H}_{eta}$	\dot{H}_{α}	${\rm H}_{eta}$	$\vec{\mathrm{H}}_{lpha}$	$\mathbf{H}_{\boldsymbol{\beta}}$	H_{α}	$\mathbf{H}_{\boldsymbol{\beta}}$	H_{α}	${ m H}_{eta}$	\dot{H}_{α}
7604-56947-0430	0.14	43.82	0.15	3800	3340	5770	5450	8040	7830	290	230	660	780	1170	1150
10914 - 58257 - 0349	0.36	45.00	0.80	5470	5760	7810	8190	10140	10560	20	0	20	50	20	50
1655 - 53523 - 0151	0.07	43.56	0.31	2990	3250	4740	4940	7300	7410	02	50	360	180	730	730
8293-57361-0914	0.19	44.33	0.28	5470	6540	8240	9230	10860	11930	-220	-50	-220	0	-220	-50
2245 - 54208 - 0165	0.39	44.86	0.40	3570	3560	5620	6030	8100	8550	220	550	510	1280	950	1510
10723- 58287 - 0024	0.37	44.72	0.48	1610	1870	2700	2880	6200	4750	0	50	20	50	220	370
7090-56659-0100	0.23	44.33	0.28	4450	3470	6340	5160	8240	7450	-70	0	-70	-50	-70	-140
7618 - 56898 - 0540	0.14	44.04	0.19	3870	3660	5990	5170	8910	6680	02	0	440	50	1320	0
7611 - 56946 - 0008	0.10	43.97	0.59	3350	5440	5180	7680	7220	0960	0	50	20	0	02	0
1381 - 53089 - 0447	0.08	43.81	0.74	2840	4340	4870	6440	6910	8770	-1240	-50	-1670	-50	-1670	-90
8214-57867-0390	0.15	44.23	0.71	3430	3610	6500	5260	10220	7090	-70	50	-360	140	-440	500
2520-54584-0072	0.10	43.59	0.21	3210	2700	4600	4070	5990	6360	0	-50	-70	-50	0	-50
8367-57429-0786	0.30	44.90	0.65	5690	6080	8240	8640	10940	11100	150	-50	360	-50	730	-50
10754 - 58224 - 0139	0.35	44.96	0.90	4890	3660	7520	6220	10080	0026	660	00	1680	550	2480	820
9362 - 57801 - 0818	0.22	44.33	0.18	6410	6520	9180	9130	11810	11790	0	2940	0	3070	0	3070
8535-58019-0780	0.17	44.13	0.46	3060	3610	4670	5490	6860	8090	150	50	290	00	730	320
0658 - 52146 - 0548	0.36	45.19	0.23	5390	5760	7650	8180	9910	10560	0	0	-70	50	0	50
9380-58081-0249	0.20	44.15	0.26	2920	2560	4750	3930	7380	6500	150	0	510	00	800	460
2216-53795-0640	0.38	44.78	0.57	2630	3520	4230	5710	6570	8410	150	230	290	096	440	2010
4564 - 55570 - 0896	0.05	42.95	0.32	1820	3430	2920	5220	4380	8100	02	140	0	370	0	1420
9561 - 57809 - 0212	0.19	44.94	0.78	7220	7170	10140	10000	12910	12790	-70	-140	-70	-50	20	00
0611 - 52055 - 0437	0.04	42.88	0.05	6150	5940	9290	8410	12220	10840	1900	0	1980	0	1980	50
9561 - 57809 - 0036	0.24	44.73	0.32	6500	6150	9360	8670	12060	11470	1390	2940	2190	3350	2700	3400
10664 - 58464 - 0764	0.18	43.98	0.17	6500	7640	9490	0260	12480	12710	-70	-690	0	-90	-70	0
7618-56898-0630	0.18	44.15	0.72	1530	1870	2770	2740	4600	4110	02	-50	150	0	220	180
9160-57656-0096	0.39	44.67	0.28	3650	2930	5770	4530	8620	7410	150	0	660	50	1610	270
8197-57064-0585	0.28	44.62	0.32	7440	9730	10430	13070	13500	16170	0	500	20	640	20	730
2514 - 53882 - 0480	0.34	44.80	0.56	5100	4750	7280	6710	9390	8760	0	0	0	-50	20	-90
10728-58248-0176	0.39	44.79	0.68	3430	4530	5760	6950	8900	9610	02	320	360	910	580	1370
2524 - 54568 - 0468	0.37	45.03	0.27	4960	5300	7000	7500	9190	0690	0	0	0	0	0	0
7405-57134-0384	0.32	44.80	0.13	5840	4890	8470	7410	11310	10380	290	230	730	550	1100	096

			Tabe	ла В.1	. – нас	Tabak	са пре	ндохте	е стра	нице					
SDSS ID	8	$\lambda L_{\mathrm{E100}\mathrm{\AA}}$	$R_{\rm FeII}$	FW	MM	FW	QM	FW	10M	2	0	z^2	ល	z1	0
plate-MJD-fiber		$\left[ergs^{-1} \right]$		[km;	s^{-1}	[km	\mathbf{s}^{-1}	[km	\mathbf{s}^{-1}	[km;	s^{-1}	[kms	5-1]	[kms	
I		1 		${\rm H}_{eta}$	$H\alpha$	${\rm H}_{eta}$	$H\alpha$	H_{β}	H_{α}	$\mathbf{H}_{\boldsymbol{\beta}}$	H_{α}	$\mathbf{H}_{\boldsymbol{\beta}}$	H_{α}	${ m H}_{eta}$	H_{α}
11077 - 58433 - 0196	0.14	43.93	0.34	6270	5030	9110	7360	11950	0966	150	0	220	50	290	90
8278-56990-0574	0.28	44.54	0.62	2550	2470	4450	3750	7450	6030	20	0	510	0	880	370
1834-54562-0030	0.04	43.29	0.33	4160	3520	7010	5260	10290	7230	360	140	1310	320	1820	550
9579 - 57867 - 0654	0.28	44.51	0.24	3800	3380	5990	5210	8260	8000	1460	00	1900	370	1970	1230
11546 - 58488 - 0907	0.20	44.25	0.31	4670	4340	6710	6170	8610	7960	0	50	0	50	0	0
1227 - 52733 - 0435	0.16	44.47	0.23	2990	2650	4820	3980	8180	6220	02	0	290	50	1310	00
10664 - 58464 - 0790	0.35	44.64	0.24	2990	2520	6350	4210	9490	7690	-70	-50	-360	-270	-290	-730
9404-58045-0057	0.30	44.51	0.25	2700	2380	4160	3570	7080	5490	02	0	220	0	1390	0
9208 - 57688 - 0638	0.28	44.58	0.37	3070	2740	5330	4210	8180	7090	290	0	950	00	1310	500
7758-58402-0806	0.38	44.76	0.19	6880	7510	9810	10300	12740	12950	0	180	0	50	0	-140
5856 - 56090 - 0134	0.35	44.87	0.34	5400	6170	8090	8860	11080	11700	0	-140	-70	-270	-150	-460
1003 - 52641 - 0563	0.20	44.49	0.29	5900	5690	8530	8130	10930	10610	02	3310	02	3440	150	3440
2745 - 54231 - 0295	0.27	44.77	0.33	4670	4390	7670	6950	10740	10020	580	370	1680	1100	2560	2240
0930-52618-0401	0.16	43.98	0.42	3280	2790	5110	4160	7300	6220	02	50	150	50	150	00
8862 - 57461 - 0682	0.37	44.67	0.43	6640	6030	9480	8730	12250	11430	220	180	440	410	580	730
1871 - 53384 - 0178	0.14	44.03	0.47	6050	5390	8680	7810	11450	10550	02	0	220	50	360	140
11124 - 58430 - 0649	0.24	44.39	0.44	3730	2840	6940	4340	10450	6950	360	0	1530	50	1830	370
7912 - 57310 - 0504	0.34	44.65	0.48	3280	3750	5110	5720	7370	8510	220	00	580	410	950	1280
2104-53852-0178	0.03	42.31	0.18	2770	4070	4380	5770	6280	7460	150	50	290	0	290	50
0740-52263-0549	0.23	44.63	0.49	2920	2880	5250	4300	8240	6120	150	140	1020	370	1680	910
11071 - 58429 - 0123	0.40	45.09	2.78	4310	4800	6130	6810	7960	8730	20	50	0	50	20	50
7428-56781-0456	0.28	44.51	0.20	6350	5030	8980	7640	11530	10660	-70	-90	-70	-230	0	-320
6877 - 56544 - 0442	0.39	44.94	0.25	2410	2240	4300	3430	7520	6130	20	50	220	50	360	550
4234- 55478 - 0590	0.22	44.25	0.93	4580	4110	6760	6070	8940	8540	-1820	0	-1960	50	-1960	140
0570 - 52266 - 0517	0.16	44.20	0.90	5770	5220	8550	7830	11470	10760	510	370	950	060	1240	1880
11109-58523-0862	0.33	44.73	0.70	4750	3290	7020	5310	9290	7590	950	180	1610	370	1970	460
2973 - 54591 - 0190	0.19	44.08	0.00	4160	3930	6570	5980	9410	0000	220	00	730	320	1240	870
1365 - 53062 - 0378	0.14	44.76	0.17	6920	5980	9840	8450	12680	10910	-20	-50	-70	-50	0	-50
10239-58142-0021	0.26	44.83	0.08	3870	3250	6350	5030	9930	7910	20	50	360	00	580	230
8390-57485-0044	0.16	44.31	0.65	3280	4480	5030	6540	6930	8730	20	00	220	230	220	410
0404-51812-0141	0.04	43.20	0.43	4880	5370	7500	7830	10560	10560	220	-180	099	-460	1090	-910

			Tabe	ла В.1	. – нас	тавак	ca npe	ндохте	е стра	нице					
SDSS ID	~	$\lambda L_{\rm gamma 0}$	$R_{ m FeII}$	FW	MM	FW	QM	FW_{c}	M01	z_5	0	z^2	ň	z1	0
plate-MJD-fiber		[ergs ⁻¹]		km	s^{-1}	km	s^{-1}	[km	s ⁻¹]	[kms		[kms	5-1]	[kms	-1-
		י) י		${\rm H}_{eta}$	$\vec{\mathrm{H}}_{lpha}$	H_{β}	$\vec{\mathrm{H}}_{lpha}$	H_{β}	H_{α}	\mathbf{H}_{eta}	H_{α}	$\mathbf{H}_{\boldsymbol{\beta}}$	H_{α}	${ m H}_{eta}$	\dot{H}_{α}
0355-51788-0528	0.31	44.70	0.33	3790	3380	0909	5160	9190	8270	150	0	510	50	1310	140
1795 - 54507 - 0457	0.15	44.78	0.11	4380	3660	6940	5580	10080	8600	290	0	660	180	1170	640
0412 - 52258 - 0400	0.11	43.75	0.15	3640	4940	5390	2690	7440	10430	150	820	290	1650	440	2110
7880-57336-0743	0.36	44.94	0.24	6210	6950	9280	9830	12340	12710	660	0	660	50	660	0
8543-57542-0004	0.27	44.51	0.55	3650	4760	5470	7140	7660	9740	-150	270	-220	640	-360	096
7590-56944-0922	0.14	43.77	0.36	2770	4890	4810	7220	7360	9640	150	140	730	270	1090	410
3659 - 55181 - 0768	0.08	42.83	0.00	4950	4970	7060	0202	0606	9130	-140	50	-360	50	-510	0
0565 - 52225 - 0383	0.30	44.96	0.58	3720	3480	6130	5810	8840	9290	360	180	1170	780	1680	1690
2570-54081-0138	0.05	43.40	0.00	6540	5310	8000	7640	9330	9980	3600	180	3740	320	3890	550
8533-58017-0988	0.17	43.85	0.97	2480	3290	5250	5170	9550	8410	0	180	-440	500	-510	1650
0517 - 52024 - 0360	0.08	43.71	0.27	4160	3390	5980	5310	7810	7240	20	460	150	1100	220	1560
9157 - 57742 - 0936	0.32	44.64	0.70	2480	3160	4090	6100	7010	8990	0	009	0	1880	0	2110
1060-52636-0293	0.12	44.06	0.59	2260	2610	3580	3890	5770	6260	02	50	220	140	950	1140
3821 - 55535 - 0174	0.32	44.86	0.05	3790	5070	6480	7270	9030	9510	-150	140	-220	230	-290	370
7601-56959-0728	0.21	44.31	0.31	5540	4020	7880	6080	10060	8780	0	0	0	50	0	00
11073 - 58451 - 0828	0.32	44.38	0.39	3210	2160	5550	5410	8470	8630	290	230	880	2110	1170	2290
2485 - 54176 - 0411	0.08	43.06	0.29	4300	4980	6420	7120	8610	9360	360	50	880	180	1310	410
11649-58514-0708	0.34	44.26	0.26	4160	3570	6870	5630	10080	8690	360	180	1320	500	2340	1190
7700-58016-0956	0.40	44.67	0.33	3060	3890	4890	6040	2000	8510	0	230	-70	550	0	820
7669-57329-0766	0.19	44.26	0.59	2480	3160	4380	5400	6570	8190	0	140	0	550	0	690
2972 - 54586 - 0558	0.03	42.65	0.25	7400	4310	10780	6140	13630	8120	1690	0	2860	00	3660	230
0394 - 51913 - 0429	0.13	43.30	0.13	5400	4480	7440	6350	9410	8320	0	0	0	-50	-70	0
1439-53003-0597	0.02	42.45	0.00	950	4120	1320	7600	1760	10530	-70	00	0	00	0	00
2808-54524-0380	0.07	42.90	0.00	4480	4210	7010	7730	9330	10700	140	180	220	140	220	180
1624 - 53386 - 0633	0.34	44.81	0.09	7870	7490	10940	10640	13850	13560	1020	730	1600	1230	2040	1690
8752 - 58402 - 0402	0.10	43.45	0.71	6060	3380	8180	5260	10080	7820	1100	90	1460	230	1750	500
7668-57579-0803	0.24	44.11	0.51	3930	2930	6190	4660	8230	7680	-290	00	-360	370	-360	1100
11288-58401-0262	0.22	44.58	0.39	3650	2970	5760	6040	8310	8650	-150	50	-220	00	-290	140
8834-57458-0374	0.38	45.08	0.43	2260	2380	4090	3610	6930	6080	-70	0	0	50	20	140
1780-53090-0008	0.32	44.72	0.56	6930	7320	9850	10380	12770	13350	-70	0	-70	50	-70	00
1426 - 52993 - 0551	0.05	43.02	0.84	4600	4890	6570	0669	8460	0006	02	50	0	50	0	50

			Tabe	ла Б.1	– Hac	тавак	ca npe	ндохте	e crpa	нице					
SDSS ID	~	$\lambda L_{\rm E100\mathring{A}}$	$R_{\rm FeII}$	FW_{-}	MH	FW	QM	FW	M01	z5	0	z^2	5	z10	0
plate-MJD-fiber		ergs ⁻¹]		km£	3-1]	[km	s^{-1}	km	s_1]	[kms		[kms		[kms	-1-
		1 		H_{β}	H_{α}	H_{β}	H_{α}	$\mathrm{H}^{\mathrm{H}}_{eta}$	H_{α}	\mathbf{H}_{eta}	H_{α}	\mathbf{H}_{eta}	H_{α}	$\mathbf{H}_{\boldsymbol{eta}}$	\dot{H}_{α}
9163-58043-0152	0.34	44.47	0.31	3140	2830	4890	4250	7230	6260	220	0	099	50	1390	410
7379-56713-0970	0.28	44.33	0.65	3950	3290	5490	4940	2090	7730	1460	00	1540	270	1540	1240
7624-57039-0407	0.30	44.62	0.56	3430	2200	5330	5360	7230	8250	220	280	000	2160	950	2380
2093 - 53818 - 0618	0.12	43.81	0.24	3280	3930	5030	5900	6930	8050	20	270	220	690	360	1100
9601-58083-0595	0.30	45.25	0.47	4160	3890	6570	5990	9640	9100	220	-50	580	-50	1020	-50
7875-56980-0860	0.12	43.64	0.39	2480	3430	4450	5950	7220	8980	150	230	360	920	510	1280
1307 - 52999 - 0494	0.23	44.44	0.17	3790	4210	5620	6410	7660	8830	150	270	220	640	360	1050
10268 - 58487 - 0560	0.17	44.38	0.13	4010	5390	6050	7760	8380	10320	220	00	510	270	950	550
1726-53137-0634	0.04	43.19	0.49	3210	2470	5330	3840	7600	5720	440	00	1100	270	1610	590
7915-57309-0464	0.33	44.59	0.60	3500	5490	5760	7910	8900	10380	150	0	360	-50	580	-50
0330-52370-0257	0.06	43.57	0.12	3210	3250	5470	5030	8830	7950	150	50	220	180	360	550
11561 - 58485 - 0308	0.09	43.47	0.00	5840	5440	8240	7680	10730	0966	0	50	02	0	20	0
7099-56666-0869	0.06	43.85	0.10	3220	3200	5630	4940	8770	7780	150	0	800	90	1020	460
2158-54209-0114	0.14	44.39	0.71	3430	3660	5400	5720	8030	8380	220	180	880	590	1750	1240
2356 - 53786 - 0025	0.08	43.47	0.39	4810	4110	6780	5850	8820	7540	0	0	02	0	70	50
8302-57389-0479	0.15	44.17	0.18	6440	5720	9440	7960	12370	10250	1460	140	1540	0	1540	0
7291 - 56992 - 0202	0.28	44.61	0.54	3790	2690	7080	4930	10360	7760	-580	50	-2120	270	-2630	270
1747 - 53075 - 0453	0.06	43.16	0.00	4720	4570	6750	6580	8860	8730	-2400	00	-2540	180	-2470	410
7385-56710-0578	0.32	44.53	0.50	5100	4660	7870	7170	10860	10190	580	270	1460	870	2110	1600
7694 - 57359 - 0396	0.40	44.71	0.58	3650	3530	5910	5860	8100	8200	440	500	1100	1280	1530	1600
1443 - 53055 - 0358	0.22	44.91	0.20	3870	3750	5760	5580	7730	8180	220	00	360	270	440	1050
1171-52753-0138	0.03	42.65	0.03	2920	2890	4230	6650	5540	9310	-150	500	-150	3070	-290	3990
7687-57007-0206	0.26	44.14	0.84	3140	2480	5620	5550	9560	8710	20	280	510	1880	660	2110
0278 - 51900 - 0527	0.09	44.02	0.75	3360	5160	5760	7450	9560	9830	0	140	-70	140	-70	230
2642 - 54232 - 0560	0.38	44.93	0.34	2920	2560	5110	4160	8320	6630	150	00	730	230	1310	410
0585 - 52027 - 0368	0.11	43.32	1.11	6940	6750	0670	9580	12710	12360	20	0	0	0	0	-50
11396-58490-0654	0.29	44.51	0.77	4160	4250	6860	6720	10440	9840	20	230	-150	870	-220	1780
1795-54507-0106	0.24	44.81	0.70	7070	6720	9980	9510	12900	12290	20	-50	20	0	20	-50
8733-58396-0305	0.13	43.64	0.24	2850	2330	4380	3470	6130	5390	220	50	580	00	730	370
9400-58107-0652	0.23	44.34	0.77	3570	4210	6330	6590	8810	9340	-1380	270	-1380	640	-1380	920
1844-54138-0424	0.09	43.15	0.39	3800	3700	6570	5720	9560	8190	290	230	1610	069	3140	1510

			Tabe	ла В.1	. – нас	тавак	са пре	ндохте	е стра	нице					
SDSS ID	8	$\lambda L_{\mathrm{E100}\mathrm{\AA}}$	$R_{ m FeII}$	FW	MM	FW	QM	FW	10M	z_5	0	z^2	5	z1	0
plate-MJD-fiber		$\left[ergs^{-1} \right]$		[km;	s^{-1}	[km:	s^{-1}]	[km;	s^{-1}]	[kms	3 ⁻¹]	[kms	s^{-1}]	[kms	
		1		H_{β}	H_{α}	H^{-}_{β}	H_{α}	H_{β}	$H\alpha$	${\rm H}_{eta}$	H_{α}	H_{β}	H_{α}	H_{β}	H_{α}
1781-53297-0444	0.12	44.13	0.69	1670	3430	4590	5440	7360	8550	-220	50	-1240	320	-1240	780
1841 - 53491 - 0203	0.06	42.94	0.00	3780	3880	5600	5580	7420	7400	-1310	50	-1380	00	-1310	180
9163 - 58043 - 0822	0.16	43.97	0.32	4610	4430	6950	6310	9210	8180	1240	50	1390	0	1460	50
7301-56746-0177	0.36	44.71	0.44	5100	4400	7290	0269	9400	9540	0	2200	0	2480	-70	2480
1175 - 52791 - 0031	0.12	44.27	0.31	5920	6950	9140	9830	12140	12710	1680	0	1680	50	1760	0
10449-58137-0658	0.33	45.28	1.51	6120	5620	8600	7900	11080	10280	0	-50	0	-50	0	-50
2094-53851-0630	0.12	44.19	0.21	6640	5580	9420	7860	12190	10150	02	0	20	0	20	0
7852-56987-0932	0.23	44.18	0.15	4230	4730	5980	7120	7730	9600	0	2800	0	3080	0	3080
9573 - 57787 - 0634	0.18	44.21	0.78	5180	4480	7880	6720	10880	9560	510	00	1170	320	1820	780
1624 - 53386 - 0243	0.08	43.12	0.14	3210	3700	5180	5530	7590	7450	290	230	950	500	2040	780
0883 - 52430 - 0320	0.18	44.76	0.23	6790	5900	9710	8700	12480	11540	220	090	220	1370	220	1460
1651 - 53442 - 0620	0.04	43.03	0.55	2190	1650	3580	2560	7300	4340	0	0	02	0	290	-50
8740-57367-0232	0.25	44.31	0.64	3720	4070	5910	6080	8320	8230	360	500	950	090	1600	1280
0465 - 51910 - 0548	0.04	42.62	0.12	2920	3160	4230	4570	5770	5810	0	50	0	180	-220	140
7412-57162-0116	0.36	44.63	0.22	4090	4110	6200	6170	8830	8870	290	00	099	320	1240	910
1428 - 52998 - 0497	0.14	44.17	0.33	3570	4120	5620	6260	8830	9240	02	00	360	230	950	550
1740-53050-0215	0.04	42.47	1.02	5530	4760	8880	6950	11930	9240	-1750	270	-1750	550	-1750	820
1575 - 53493 - 0640	0.04	42.91	0.43	3210	3700	5470	5440	8610	7320	150	320	510	069	730	1100
9630-58086-0732	0.12	43.62	0.07	4020	3610	6130	5400	8910	7590	02	50	290	0	880	0
2089 - 53498 - 0364	0.05	42.82	0.00	3350	3930	5030	5710	6700	7530	290	00	660	230	1170	410
8752-58402-0190	0.35	44.51	0.09	6420	5990	9050	8600	11750	11110	0	-50	0	-90	-70	-140
7309-56991-0588	0.38	44.61	0.15	4090	3470	6710	5800	9410	9180	440	00	730	320	800	590
10913 - 58256 - 0231	0.26	44.48	0.06	5340	5570	8560	7860	11640	10140	2420	0	2420	0	2420	0
9154 - 58013 - 0971	0.32	44.61	0.42	5540	4250	7730	6350	9920	8640	150	140	290	230	290	320
7701-57356-0137	0.22	43.89	0.54	2550	2880	3940	4530	5840	6910	-70	140	-150	320	-150	690
0451 - 51908 - 0145	0.03	42.40	0.00	1820	2380	2700	3430	3430	4850	-70	0	-70	50	-70	460
1588 - 52965 - 0438	0.07	43.29	0.39	3500	3290	4300	4750	5020	6300	-1020	0	-800	0	-510	0
6309 - 56485 - 0308	0.15	43.81	0.57	2700	2420	4310	3470	7740	4480	02	-50	220	0	1020	0
1467 - 53115 - 0216	0.32	45.46	0.96	5900	6220	8460	8820	10790	11480	-70	00	0	140	0	230
7667-57580-0760	0.29	44.16	0.50	4450	4670	6350	6820	8250	9240	-70	180	-70	410	-70	820
8543 - 57542 - 0855	0.24	44.31	0.48	3660	4480	7240	6360	10310	8190	-150	0	-220	-50	-220	-50

			Tabe	ла В.1	— нас	тавак	ca пре	ндохте	е стра	нице					
SDSS ID	~	$\lambda L_{_{E100}{ m \AA}}$	$R_{\rm FeII}$	FW_{-}	MH	FW_{i}	QM	FW	10M	z5	0	z_{2}	5	z1	0
plate-MJD-fiber		$\left[ergs^{-1} \right]$		km	s ⁻¹]	[km	s ⁻¹]	[km	s_1]	kms	5-1]	[kms	-1-	[kms	-1-
I		, ,		${\rm H}_{eta}$	$\dot{\mathrm{H}}_{lpha}$	H_{β}	${ m H}_{lpha}$	${\rm H}_{eta}$	\dot{H}_{α}	$\mathbf{H}_{\boldsymbol{\beta}}$	H_{α}	$\mathbf{H}_{\boldsymbol{\beta}}$	H_{α}	\mathbf{H}_{eta}	\dot{H}_{α}
9143-57665-0092	0.05	42.90	0.49	5330	950	7660	1360	10210	1770	-70	-50	-220	0	-580	-50
2246-53767-0066	0.09	43.77	0.26	4160	4020	6050	5940	8020	8460	20	00	220	370	580	1140
8169-57071-0515	0.31	44.52	0.22	4380	3110	8030	5440	11390	9420	730	00	1020	410	1020	640
8413-57897-0651	0.39	44.99	0.51	4740	5940	7230	8500	10220	11060	220	-180	800	-370	1610	-640
8359 - 57449 - 0084	0.26	44.29	0.35	4380	4170	6790	6140	9340	8160	580	1790	1240	2020	1460	2020
7751-58081-0008	0.24	44.43	0.44	3650	3430	5840	6050	8390	8880	150	410	730	1370	1390	1830
0963 - 52643 - 0545	0.29	45.10	0.07	4820	4260	7890	7140	10890	10260	730	500	1900	1650	2700	2660
1782 - 53299 - 0170	0.09	43.68	0.29	6130	4300	8840	6410	11610	8700	290	00	510	00	800	180
7653 - 57306 - 0032	0.22	44.43	0.50	6930	7120	9840	9860	12610	12690	220	-180	220	0	220	0
4209-55478-0402	0.35	44.47	0.84	2040	2750	3790	4210	6640	6590	0	0	-290	270	-510	1560
2599 - 54234 - 0478	0.25	44.54	0.38	3130	4210	5820	6400	8220	9010	-800	180	-870	460	-950	780
2882 - 54498 - 0437	0.23	44.48	0.41	3650	3380	5910	5210	9340	8230	0	0	02	0	150	-90
0346-51693-0223	0.15	44.18	0.26	3580	3980	6500	6080	9560	9050	510	140	1680	410	1970	1100
2281 - 53711 - 0151	0.07	43.90	0.24	1390	2790	4160	4430	7230	6950	20	50	360	50	360	180
9150-58043-0387	0.13	43.82	1.05	6950	4760	9870	0229	12650	8780	-70	0	-70	0	-70	0
9166-58051-0359	0.19	43.82	0.53	2340	1920	3720	3060	6280	4890	0	0	02	50	290	50
2147 - 53491 - 0605	0.14	44.28	0.38	5110	3890	7220	5940	9340	8730	0	50	02	00	0	320
8875-57779-0156	0.39	44.79	0.39	2920	2610	4670	3930	8100	6490	150	50	290	0	1100	-180
8427-57846-0717	0.34	44.93	0.38	5470	4250	7800	6350	10060	8960	-70	140	02-	410	0	1100
0494 - 51915 - 0089	0.05	43.14	0.00	2990	4810	4310	7050	5550	9430	20	230	02	550	150	820
8500-57432-0207	0.33	44.53	0.32	3640	2920	5310	4480	0669	0669	-1160	0	-1240	0	-1160	-50
3588 - 55184 - 0569	0.24	43.81	0.54	1970	1650	3360	2510	7880	4160	70	0	150	50	440	50
2268 - 53682 - 0492	0.07	43.34	0.54	3790	4160	6060	5940	9340	7630	290	50	950	0	2040	50
7563 - 56810 - 0156	0.05	43.28	0.08	6950	5630	9940	8240	12870	10860	660	320	1170	640	1610	1050
8277-57073-0882	0.36	44.77	0.45	2340	2420	4090	3610	7230	5670	150	50	580	50	1390	270
7900-57358-0790	0.39	44.59	0.21	6360	4990	0200	8200	11990	11400	1970	1140	2630	1970	2920	2060
2267 - 53713 - 0457	0.09	43.35	0.68	3140	3520	4810	5300	6780	7860	20	50	150	180	220	820
8203-57428-0809	0.12	43.89	1.14	4300	2340	6480	3530	8600	6140	-1680	140	-1680	320	-1750	1830
8220-57432-0650	0.16	43.92	0.31	5200	4910	7250	7060	9370	9350	1830	1600	1980	2020	2050	2110
7276-57061-0470	0.22	44.57	0.08	6660	6040	9370	8880	12290	11810	1390	460	1760	1010	1900	1740
2222-53799-0194	0.14	44.52	0.23	2120	2150	3430	3200	6420	5210	20	-50	220	0	880	370

			Tabe	ла В.1	. – нас	тавак	са пре	ндохт	е стра	нице					
SDSS ID	~	$\lambda L_{\rm E100\mathring{A}}$	$R_{ m FeII}$	FW_{-}	HM	FW	QM	FW	10M	z_5	0	z^2	5	z1	0
plate-MJD-fiber		ergs ⁻¹]		km	s^{-1}	[km	\mathbf{s}^{-1}	km	s^{-1}	km	5-1]	kms	s_1]	[kms	-1-
		1		H_{β}	H_{α}	H_{β}	H^{α}	${\rm H}_{eta}$	$\vec{\mathrm{H}}_{lpha}$	$\mathbf{H}_{\boldsymbol{\beta}}$	H_{α}	H_{β}	H_{α}	$\mathbf{H}_{\boldsymbol{\beta}}$	\dot{H}_{α}
1758-53084-0187	0.31	44.83	0.77	4020	5170	6060	7910	8100	10880	360	500	800	1230	1240	2010
6379 - 56340 - 0295	0.22	44.25	0.18	4680	3840	7600	6220	10600	9470	1170	180	1610	550	1680	1140
2227 - 53820 - 0085	0.32	45.00	0.60	4080	4810	5820	6970	7860	9210	0	2060	-150	2380	-440	2340
10258-58492-0406	0.37	44.50	0.51	2480	2240	4160	3470	7230	6080	0	50	360	00	950	410
2109-53468-0250	0.09	43.56	1.38	2990	2560	4450	4210	6420	8150	-70	00	-220	460	-880	1740
2953 - 54560 - 0240	0.11	43.99	0.46	3220	2380	7600	3790	11110	6030	1170	00	1460	140	1460	370
8823-57446-0580	0.37	45.15	0.56	5690	6180	8100	8740	10430	11210	0	50	-70	50	-70	50
0497-51989-0466	0.13	44.36	0.18	3500	5540	5900	8190	8080	11070	-730	410	-800	090	-800	1740
1419-53144-0552	0.10	44.25	0.20	3940	3930	5840	5710	7810	7820	150	00	290	230	510	410
1187 - 52708 - 0028	0.38	45.00	0.69	4380	4390	6490	6580	8750	9460	290	180	800	550	1310	1330
1061 - 52641 - 0116	0.04	43.05	0.10	5840	5400	8320	7730	10730	10150	0	00	0	140	-70	270
1304-52993-0428	0.06	43.24	0.30	5700	3710	8910	5810	12190	8150	580	320	1750	780	2990	1010
10269 - 58220 - 0374	0.20	44.48	0.50	4010	4620	6120	0069	8750	0096	02	50	150	-50	290	-90
2497 - 54154 - 0441	0.27	44.70	0.36	3130	4670	5760	7280	8240	10300	-220	270	-360	870	-360	1600
8436-57895-0147	0.37	44.96	0.90	3500	3200	4960	4570	6420	5900	0	0	0	0	0	-50
2006-53476-0618	0.19	44.44	0.32	4010	5850	7290	8360	10130	10870	-510	0	-440	50	-510	180
7703 - 57333 - 0168	0.11	43.70	0.26	2550	2100	3940	3150	6930	4620	-70	0	150	50	950	140
7635-56979-0760	0.23	44.60	0.29	4150	5070	7060	7440	9680	10090	-510	-50	-510	-50	-510	50
7290-57073-0292	0.16	44.10	1.31	5470	2660	7810	4030	10070	8380	-70	00	-70	370	-150	3620
1575 - 53493 - 0495	0.27	44.61	1.37	5620	5080	8390	7730	11310	10660	-360	410	-660	090	-950	1780
3772-55277-0167	0.16	43.53	1.02	2990	3570	4670	7380	2000	10630	-70	1010	0	3350	0	3850
11313-58426-0537	0.21	44.18	0.35	2260	3340	3580	4760	7150	6170	02	-50	220	0	1460	-50
7609-56959-0283	0.28	44.90	0.53	7350	7260	10410	10220	13390	13150	02-	-140	-70	-270	0	-370
0494 - 51915 - 0124	0.18	44.53	0.22	4600	4890	7370	7000	10000	9010	220	50	220	50	220	50
2296-53735-0168	0.02	42.62	0.26	4600	3840	6430	5670	8100	7590	360	0	440	0	510	00
7674-57359-0628	0.07	42.90	0.21	4380	3250	6420	4620	8610	5990	150	-50	440	-50	580	-50
11341 - 58428 - 0682	0.21	43.35	0.24	5180	0209	7810	8630	10440	11090	1100	50	1240	50	1240	50
5343 - 55999 - 0238	0.03	42.41	0.72	2920	2380	4600	3340	6430	4340	290	0	800	50	1320	50
0476 - 52314 - 0523	0.05	43.58	0.42	3790	4170	5760	7050	7810	10030	290	009	099	1560	950	1970
9575-57786-0558	0.38	44.49	0.32	7010	6950	10010	9880	12850	12720	0	0	20	0	0	0
6670 - 56389 - 0322	0.38	44.89	0.26	0202	7220	9980	10280	12900	13200	02-	0	-70	50	-70	50

			Tabe	ла В.1	. – нас	тавак	ca npe	ндохте	е стра	нице					
SDSS ID	~	$\lambda L_{_{E100}{ m \AA}}$	$R_{\rm FeII}$	FW_{-}	HM	FW	QM	FW	10M	z2	0	z^2	5	z1	0
plate-MJD-fiber		ergs ⁻¹]		km	s^{-1}	[km	s^{-1}	[km	s^{-1}	km	3-1]	kms	s_1]	[kms	-1-
		ר ו ע		${\rm H}_{eta}$	$\vec{\mathrm{H}}_{lpha}$	H_{β}	$\vec{\mathrm{H}}_{lpha}$	${ m H}_{eta}$	$\dot{\mathrm{H}}_{lpha}$	H_{β}	H_{α}	$\mathbf{H}_{\boldsymbol{\beta}}$	H_{α}	${ m H}_{eta}$	\dot{H}_{α}
11340-58433-0490	0.10	43.50	0.80	3430	3340	4890	4800	6350	6720	02	50	20	230	02	780
7895-57659-0317	0.23	44.58	0.21	4740	4110	7010	6130	9710	8730	02	0	290	-90	510	-140
8297-57416-0531	0.18	44.23	0.19	5770	4710	8540	7180	11390	10150	510	230	1100	590	1610	1190
1997 - 53442 - 0639	0.33	45.24	1.44	5760	6350	8310	9140	10790	11930	-70	320	-150	640	-290	096
0490-51929-0237	0.12	43.94	0.82	3570	3840	5750	5810	7650	8640	-950	00	-950	230	-950	590
1059-52618-0215	0.25	45.09	0.64	4600	4800	7370	7270	10290	10150	510	50	1240	140	1530	270
8878-57785-0528	0.39	44.87	0.38	2920	7830	4820	10140	7660	12720	150	-860	580	-270	1240	-50
2167 - 53889 - 0484	0.07	43.63	0.28	7190	6320	9610	8160	12400	9940	4260	1650	4770	2020	4770	2340
9169-58069-0638	0.12	43.68	0.50	3510	2930	5770	4390	8400	6400	290	0	950	00	1240	370
8829-57446-0446	0.31	44.87	0.12	6920	6940	9840	9870	12680	12750	-70	0	-70	0	0	-50
10753- 58242 - 0931	0.31	44.65	0.17	6190	5070	9260	8310	12240	11510	-1090	-1050	-1240	-1550	-1170	-1550
2222- 53799 - 0453	0.06	43.56	0.86	4240	2200	7380	3670	10600	5500	440	180	1100	830	1240	1740
9171-58068-0727	0.17	44.30	0.37	3070	3060	5330	4760	9420	7960	150	50	510	180	800	640
0644 - 52173 - 0249	0.14	43.89	0.49	3280	2800	5180	5590	7660	8850	02	230	220	1470	510	1880
6313 - 56460 - 0186	0.18	43.89	0.13	4080	3930	6560	6170	0026	9410	-150	-90	-440	-320	-660	-730
11072 - 58436 - 0332	0.09	43.02	0.06	4830	3160	7610	4080	10470	4850	3070	1240	3510	1240	3440	1190
7280-56709-0524	0.18	44.12	0.34	3660	2420	5410	3750	7310	5670	1760	50	1900	00	1900	370
8406-57513-0064	0.20	44.45	0.45	2840	4850	5390	7320	7570	10240	-660	270	-870	820	-870	1550
7874 - 57279 - 0616	0.39	44.79	0.60	2780	2150	5040	3570	8180	6220	150	50	800	180	1170	370
7765-58047-0678	0.16	44.16	0.33	5030	5580	7220	7910	9410	10190	02	0	70	50	20	50
7294-56739-0957	0.16	43.98	0.65	1610	1780	2630	2650	5470	3930	0	50	0	0	20	00
8278-56990-0278	0.25	44.45	0.22	4600	4520	7220	6400	10290	8310	220	50	000	00	1240	180
7314-56990-0610	0.12	44.06	0.39	6120	5890	8670	8310	11140	10770	0	-50	-70	0	-70	0
8503-57519-0278	0.26	44.50	0.69	5100	5030	7290	7260	9550	9690	150	0	440	50	660	180
8762-57693-0244	0.22	44.52	0.43	4450	5120	6630	7260	9330	9370	02	0	220	50	290	50
1445-53062-0246	0.07	43.61	0.63	3800	2930	6430	4480	8990	6860	580	00	1610	270	2120	820
9233- 58035 - 0381	0.28	44.36	0.54	2190	1880	4160	3060	6500	5080	150	50	800	230	950	590
9353 - 57814 - 0282	0.15	43.97	0.12	6850	3970	0270	6400	12610	0690	0	-50	0	-180	20	-270
9364 - 57699 - 0988	0.36	44.73	0.71	7010	8350	9930	11630	12850	14780	0	140	0	230	0	270
0551 - 51993 - 0492	0.23	44.78	0.43	3140	3250	5110	4980	7950	7910	02	50	290	140	660	500
3122 - 54821 - 0541	0.26	44.24	0.36	2560	2420	4090	3610	6500	5300	70	50	440	50	1100	370

			Tabe	ла В.1	— нас	TABAK	ca npe	етходн	е стра	нице					
SDSS ID	~	$\lambda L_{_{E100}{ m \AA}}$	$R_{\rm FeII}$	FW	MM	FW	QM	FW	10M	<i>2</i> 5 <i>2</i> 5	0	z^2	5	z1	0
plate-MJD-fiber		ergs ⁻¹]		km	3-1]	[km	\mathbf{s}^{-1}	[km	s^{-1}	km	<u>[-1]</u>	[kms	s ⁻¹]	[kms	-1-
		ר) י		${\rm H}_{eta}$	H_{α}	H_{β}	H_{α}	H_{β}	\dot{H}_{α}	$\mathbf{H}_{\boldsymbol{\beta}}$	H_{α}	$\mathbf{H}_{\boldsymbol{\beta}}$	H_{α}	${ m H}_{eta}$	\dot{H}_{α}
0569 - 52264 - 0427	0.06	42.69	0.14	5280	4260	7630	6590	10410	8880	2790	690	3810	1470	4110	1830
7310-56693-0704	0.35	44.54	0.17	4160	3610	6280	5300	9200	7680	02	-50	150	-180	290	-640
7302-57012-0446	0.34	45.01	0.57	7080	6950	10000	9880	12920	12710	02	0	20	0	02	0
7620-56904-0603	0.15	44.05	0.40	2850	4020	4960	6450	8240	9880	220	180	580	500	950	910
11386-58514-0612	0.31	44.53	0.19	5980	6730	9040	9570	12030	12320	-880	50	-1170	50	-1240	50
10451 - 58141 - 0180	0.26	44.46	1.26	4530	2570	6940	6520	9570	10330	290	280	950	2110	1680	2160
8415-57893-0460	0.31	44.75	0.24	3940	3520	6490	5440	8970	8370	-150	50	-220	-50	-220	-230
8278 - 56990 - 0129	0.23	44.53	0.30	3930	4710	6410	6770	8600	8870	-1020	140	-1020	180	-1020	270
3736-55214-0998	0.24	44.29	0.31	3940	3660	6350	5710	8910	8730	580	00	1240	410	1610	1230
7594 - 56947 - 0207	0.31	44.74	0.31	4300	4930	6120	7040	7870	9230	02	0	0	0	0	0
10737 - 58254 - 0930	0.20	44.09	1.15	5980	5540	8460	8060	10940	10570	0	060	0	1280	0	1330
5416-56002-0330	0.07	43.50	0.00	890	1690	1330	2460	1770	3240	0	50	0	0	0	-50
6428 - 56279 - 0260	0.19	44.35	0.41	6050	4930	8530	6950	11010	0006	02-	0	-70	0	-70	50
7869 - 57012 - 0687	0.29	44.34	0.37	3210	2740	5180	4160	8470	6860	150	0	510	50	1610	0
11109-58523-0851	0.16	43.76	0.40	2190	2190	3500	3340	6500	5900	150	0	290	140	1390	1230
1650-53174-0545	0.27	44.71	0.53	3430	5050	5400	8140	7880	11280	02	-1680	290	-2680	440	-2820
0461 - 51910 - 0361	0.01	42.00	0.14	9470	6580	11820	9370	14100	12060	5070	0	5800	50	6460	0
0299-51671-0098	0.33	44.87	0.90	5030	5990	7660	8550	10290	11020	360	50	950	50	1680	50
10258-58492-0448	0.39	44.84	0.33	2550	2650	4230	4070	7150	6810	02	0	290	50	580	320
1446-53080-0129	0.02	42.88	2.06	4170	2470	6660	3750	8850	6410	950	0	1980	00	2560	1010
10762 - 58390 - 0339	0.38	44.66	2.39	2690	4580	4210	7460	5590	10300	650	550	730	1790	650	2790
8428-57837-0472	0.17	44.29	0.22	2190	2100	3430	3110	5690	4520	0	0	20	0	290	50
7589-56946-0080	0.23	44.20	0.56	2840	3900	4600	6790	7220	9580	20	1150	220	2480	360	2700
3658 - 55205 - 0538	0.13	43.55	0.17	6630	0969	9620	9840	12460	12680	-950	0	-1020	-50	-950	-50
0502-51957-0557	0.22	44.41	0.46	3720	4430	5830	6720	7940	9510	-360	50	-580	140	-660	370
2155 - 53820 - 0341	0.36	45.02	0.98	5900	6670	8380	9450	10860	12190	-70	0	-70	50	-70	50
1951 - 53389 - 0614	0.08	44.02	0.18	4520	5530	6420	7860	8310	10100	0	50	0	0	0	50
8859-57452-0638	0.34	44.53	0.25	3360	2840	5400	4440	8830	7270	0	0	150	-50	360	-140
4193 - 55476 - 0354	0.06	43.17	0.43	4690	4360	8060	5870	11430	7160	2930	2160	3520	2840	3520	3210
1305 - 52757 - 0179	0.01	41.60	0.18	2260	1560	3210	2560	4160	4170	02	00	0	370	02	690
10460-58161-0235	0.24	44.26	0.41	4240	4340	8100	7320	11320	10790	1020	230	1100	640	1100	730

			Tabe	ла В.1	– нас	тавак	са пре	ндохте	е стра	нице					
SDSS ID	~	$\lambda L_{\rm E100\mathring{A}}$	$R_{\rm FeII}$	FW_{-}	MM	FW	QM	FW	10M	z_5	0	z^2	5	z1	0
plate-MJD-fiber		$\left[ergs^{-1} \right]$		[km	3^{-1}	[km;	s^{-1}	[km:	s^{-1}	[kms	5-1]	[kms	5-1]	[kms	
I		י י		H_{β}	$\vec{\mathrm{H}}_{lpha}$	${\rm H}_{eta}$	$H\alpha$	H_{β}	H_{α}	H_{β}	H_{α}	\mathbf{H}_{eta}	H_{α}	${ m H}_{eta}$	\dot{H}_{α}
9370-58056-0773	0.18	44.06	0.23	3500	2970	5910	4530	8400	7130	440	50	1240	140	1970	730
10913 - 58256 - 0583	0.12	43.72	0.58	4450	4250	6340	6310	8240	8730	02-	50	-70	00	-70	140
11294-58451-0654	0.12	43.80	0.11	4750	3700	7960	6220	11180	9150	950	320	1530	910	1530	1190
7839-56900-0890	0.36	44.40	0.42	7220	7040	10210	0960	13200	12890	02	0	0	0	02	0
1820-54208-0373	0.03	43.24	0.41	4600	3520	6570	5300	8540	7820	360	50	730	180	950	590
11122-58437-0700	0.28	44.34	0.28	3350	5480	5250	7810	7510	10180	150	0	290	50	510	50
8380-57520-0250	0.27	44.69	0.33	4010	3380	0000	5170	8250	7870	510	00	950	230	1100	640
1404-52825-0235	0.05	43.45	0.00	5230	4940	7630	7320	9880	10020	-2760	270	-2830	640	-2900	1050
8429-57893-0896	0.40	45.04	0.96	6710	4300	9630	7180	12400	10560	730	270	1170	780	1600	1050
2617 - 54502 - 0143	0.22	44.46	0.58	4740	5670	6930	8040	9260	10380	02	0	20	0	220	50
2257 - 53612 - 0231	0.38	44.56	0.16	6270	6940	9400	9770	12320	12650	-150	0	-220	0	-220	-50
6760 - 56425 - 0390	0.03	42.52	0.00	4430	5710	6680	8170	0000	10640	-1960	140	-2320	230	-2320	320
1584 - 52943 - 0124	0.12	44.20	0.42	0629	5810	9710	8640	12630	11440	360	500	360	590	360	640
10270-58488-0915	0.15	43.93	0.74	2550	3160	4090	6280	6270	9030	02	060	290	2430	730	2890
0539 - 52017 - 0586	0.13	44.22	0.29	5470	5540	7810	7870	10140	10160	02	-50	20	0	02	0
8858-57450-0703	0.29	44.37	0.52	6710	5580	9550	8230	12320	11020	0	270	20	640	02	1050
8759-57700-0392	0.36	44.57	0.33	4300	3560	7000	5580	9920	8640	510	00	1310	370	2040	870
11109 - 58523 - 0808	0.18	43.92	0.51	3060	4020	5330	5990	7660	8770	440	00	1240	230	1390	550
0978 - 52441 - 0524	0.11	44.26	0.43	3350	4570	5250	6770	7510	9100	0	180	150	370	220	690
2108-53473-0120	0.02	42.91	0.02	6650	5850	8700	8310	10670	10740	1530	0	1970	0	2340	-50
11123 - 58429 - 0037	0.26	44.39	0.40	4810	3840	6560	6320	8600	9020	-150	370	0	1100	0	1600
1415 - 52885 - 0144	0.15	44.44	0.17	2850	2790	5040	4160	7300	6630	220	50	510	140	580	780
7833-57286-0610	0.22	44.34	0.26	3870	3380	5910	5120	8760	7820	02	0	20	0	290	-50
10654 - 58429 - 0881	0.22	44.27	0.75	3000	2430	4970	5230	7310	8340	220	230	880	1650	1610	2110
11072 - 58436 - 0135	0.32	44.44	0.32	3800	3380	5770	5210	8690	8050	150	0	360	0	1100	-90
8494-57104-0503	0.39	44.88	0.79	2920	2650	4670	3980	7150	6170	150	0	580	50	1020	410
7687-57007-0980	0.32	45.06	0.19	3720	4440	5980	6960	8680	9840	02	320	150	730	220	1140
8292-57373-0016	0.38	44.78	0.06	6290	5680	9360	8800	12360	11910	1320	1190	1320	1650	1390	1650
1740-53050-0399	0.37	44.94	0.18	6910	6970	9820	9850	12730	12720	02	-50	20	0	02	-50
5998-56087-0118	0.03	42.02	2.41	1100	1010	1610	1470	2120	1970	-70	0	0	0	-70	50
2425 - 54139 - 0243	0.09	43.63	0.49	2040	1830	3430	2740	6790	4300	0	0	-70	0	-70	-180

			Tabe	ла Б.1	— нас	тавак	ca npe	ндохте	е стра	нице					
SDSS ID	~	$\lambda L_{\rm E100\mathring{A}}$	$R_{\rm FeII}$	FW.	MM	FW	QM	FW	10M	z_5	0	z^2	5 2	z1	0
plate-MJD-fiber		$\left[ergs^{-1} \right]$		[km	3-1]	[km	s^{-1}	[km	s^{-1}	[kms	5-1]	[kms	s_1]	[kms	-1]
I		1		H_{β}	H^{α}	${\rm H}_{eta}$	H_{α}	H_{β}	H_{α}	$\mathbf{H}_{\boldsymbol{\beta}}$	H_{α}	$\mathbf{H}_{\boldsymbol{\beta}}$	H_{α}	${\rm H}_{eta}$	\dot{H}_{α}
5869 - 56064 - 0340	0.06	43.32	0.45	10750	4810	13040	0699	15170	8710	6630	1970	7140	2200	2660	2200
7831-57016-0676	0.35	44.62	0.70	2700	2330	5770	3610	9340	6030	220	-50	1530	-50	1610	-270
0398-51789-0010	0.05	43.44	0.37	4230	3330	6930	5120	10290	7540	290	50	950	180	1390	410
7835-56986-0700	0.21	44.19	0.11	4310	4530	7460	6450	10160	8280	1240	50	1320	50	1240	50
8160-57071-0786	0.36	44.89	0.48	3640	6310	0029	8920	9470	11520	-150	0	-290	-50	-290	0
8407-57839-0230	0.20	44.37	1.13	5330	3570	7590	5120	9780	6860	-70	0	0	00	0	370
0789 - 52342 - 0507	0.13	44.16	0.96	7140	5890	10060	8390	12970	10950	0	230	0	460	0	640
10729- 58248 - 0784	0.26	44.45	0.27	4450	5300	6780	7500	9550	9740	20	0	02	0	02	50
2772 - 54529 - 0231	0.24	44.19	0.04	3210	3060	5320	4610	7870	7120	150	140	800	320	1600	1100
7328-56715-0030	0.30	44.27	0.95	5410	5670	8330	8320	11470	11110	1320	270	2190	550	2410	870
8175-57039-0283	0.21	44.15	0.16	3350	4750	5470	7130	8160	10050	0	180	02	460	150	910
2951 - 54592 - 0326	0.11	43.81	0.60	8450	7590	11730	10650	14940	13670	150	0	220	-50	220	-50
7665 - 57328 - 0863	0.19	43.92	0.58	2120	2010	3430	3060	0629	4660	70	0	02	50	510	270
2098-53460-0582	0.03	42.91	0.59	2770	3110	4380	4800	7080	7920	150	00	440	320	1390	1330
11281 - 58424 - 0338	0.09	43.38	0.87	1680	1060	5850	1510	9940	2160	02	50	290	50	290	140
2435 - 53828 - 0435	0.07	43.33	0.16	5570	6300	8280	0606	10920	11880	2930	-370	2860	-690	2860	-1100
0613 - 52345 - 0099	0.08	43.89	0.29	3420	4610	5320	6670	7430	8860	02	-50	20	0	0	0
2419-54139-0083	0.05	43.11	0.00	4000	5980	5020	8530	5970	11180	-1090	50	-800	50	-440	50
1731 - 53884 - 0111	0.04	42.86	0.00	4020	3940	5990	6280	7890	8380	510	640	1170	1600	1610	2240
7311-57038-0117	0.30	44.79	0.39	4310	3700	6580	5810	8990	8690	660	50	1170	230	1390	550
9319-58043-0387	0.05	42.67	0.84	3500	1740	5610	2470	7510	3200	-880	0	-950	0	-950	0
0412 - 52258 - 0129	0.08	43.98	0.47	3500	3750	5400	5770	7590	8140	150	180	290	550	580	1010
3123-54741-0267	0.26	44.16	0.24	5980	5800	8670	8360	11590	10920	290	50	660	50	950	50
2603 - 54479 - 0443	0.12	43.67	0.00	2760	5700	4870	8260	7260	10910	-290	50	-800	140	-870	230
10478 - 58171 - 0264	0.24	44.39	0.37	3350	4300	5540	6490	7950	9370	-150	0	-290	00	-360	140
5884 - 56046 - 0580	0.25	44.20	0.35	3280	4530	5110	0969	7220	9560	02	410	0	820	20	1140
0469- 51913 - 0499	0.28	44.59	0.29	3940	5760	7080	8180	10290	10520	-150	0	-360	50	-360	0
7868-57006-0816	0.25	44.17	0.37	3140	3480	5260	5220	7520	7060	660	1740	1460	2020	1680	2020
4091 - 55498 - 0594	0.06	42.83	0.49	1530	1280	2340	1870	4010	2880	02	0	150	50	360	500
11059 - 58515 - 0441	0.11	43.82	0.17	4450	3840	6710	5620	9550	7540	02	0	150	50	220	140
7852-56987-0959	0.30	44.65	0.03	5470	5350	8310	7950	11300	10780	099	320	1310	820	1820	1460

			Tabe	ла В.1	. – нас	тавак	са пре	ндохте	ie crpa	инице					
SDSS ID	\$	$\lambda L_{\epsilon_{100}{\rm \AA}}$	$R_{\rm FeII}$	FW	MM	FW	QM	FW	10M	z_5	0	z^2	ы	z10	
plate-MJD-fiber		$\left[ergs^{-1} \right]$		km	s^{-1}	[km:	\mathbf{s}^{-1}	[km	\mathbf{s}^{-1}	kms	3-1]	[kms	5-1]	[kms	-1-
		1 		${\rm H}_{eta}$	H_{α}	H_{β}	$H\alpha$	H_{β}	$H\alpha$	${\rm H}_{eta}$	\dot{H}_{α}	$\mathbf{H}_{\boldsymbol{\beta}}$	H_{α}	$\mathbf{H}_{\boldsymbol{eta}}$	\dot{H}_{α}
7608-56945-0672	0.35	44.38	0.55	2630	3120	4160	5540	6860	7970	150	640	220	1700	580	2020
7915 - 57309 - 0359	0.36	44.37	0.89	2340	2650	4230	3840	8540	5490	0	00	-290	180	-800	640
6417 - 56308 - 0030	0.40	45.13	0.59	6920	6980	9840	9860	12750	12740	360	-50	800	0	1090	-50
7661-57286-0568	0.21	44.24	0.35	3580	3200	5840	4940	8760	7730	20	0	290	0	440	-50
4643- 55946 - 0582	0.24	44.46	0.78	5040	4490	7150	6590	9270	8330	20	00	0	270	20	180
7741-58078-0216	0.22	44.07	0.44	2700	2290	4450	4860	8180	7930	70	180	220	1470	1020	1790
2517 - 54567 - 0563	0.36	44.84	0.94	5110	6890	7220	9770	9340	12640	0	-50	-70	0	0	-50
7235 - 56603 - 0308	0.32	44.47	0.15	6640	5900	9490	8510	12340	11210	70	140	150	270	220	500
7854-56989-0464	0.32	44.49	0.36	4590	4620	6490	6530	8390	8410	-70	-50	-70	-50	-70	0
10228- 58223 - 0888	0.24	44.75	0.40	5400	6940	8830	9870	11960	12700	1170	0	1240	0	1170	0
8068-57185-0768	0.22	44.26	0.23	7510	6900	10640	9740	13700	12530	70	50	150	50	150	00
0974 - 52427 - 0004	0.21	44.89	0.42	4380	3790	6860	5760	10140	8590	290	50	1020	180	2550	550
11304-58448-0396	0.24	44.47	0.29	5110	4160	7670	6360	10080	9280	580	-50	510	-140	580	-410
4201 - 55443 - 0033	0.06	43.23	0.50	4070	3930	5670	5620	7410	7360	-2040	00	-2180	50	-2180	140
0589 - 52055 - 0111	0.04	43.56	0.24	5400	4390	7890	6720	10660	9510	0	0	-150	-50	-290	-90
8427-57846-0630	0.33	44.25	0.48	6940	6080	9930	8870	12710	11610	1530	410	2480	820	3210	1280
2418-53794-0624	0.23	44.38	0.56	3280	4760	5250	7410	7660	10340	20	370	0	1010	-70	1370
2019-53430-0170	0.04	42.84	0.54	2260	2110	3650	3300	5400	5450	20	00	440	370	730	1140
0397 - 51794 - 0038	0.05	42.46	0.56	3060	3890	5030	5850	7660	8230	150	230	220	640	360	1280
7871-56902-0193	0.19	43.98	0.44	3440	2010	5260	4030	7240	5720	1680	460	2490	1560	2700	1880
8535-58019-0892	0.26	44.23	0.66	4080	3470	5820	5210	7500	7490	-1020	0	-1020	-180	-1090	-460
9154 - 58013 - 0728	0.08	43.29	0.91	9980	960	11780	1410	13660	1780	-8240	50	-9330	50	-10340	50
7184 - 56629 - 0734	0.16	44.38	0.36	7290	6120	0666	8680	12680	11140	-290	0	-70	0	0	0
2156 - 54525 - 0122	0.38	44.97	0.31	4820	4520	7300	6440	9850	8360	880	50	1310	50	1530	50
1298-52964-0155	0.34	44.99	0.09	5850	5170	8770	7830	11620	10490	730	500	1320	1050	1680	1420
1768 - 53442 - 0547	0.05	43.04	0.47	3800	2980	6200	4530	9050	6000	290	500	800	090	1460	1330
2121 - 54180 - 0459	0.34	44.94	0.59	4520	4350	7000	6950	0026	9930	290	320	730	820	1090	1230
8290-57364-0409	0.24	44.22	0.76	5400	3980	7950	6080	10500	8860	440	50	800	230	1170	640
10728 - 58248 - 0424	0.36	44.75	0.29	2630	3700	4600	5810	7440	0060	150	50	220	230	290	550
11375 - 58426 - 0374	0.31	44.55	0.93	2340	3710	4230	5490	7590	7640	0	140	290	460	440	1140
1754 - 53385 - 0091	0.20	44.38	0.40	3930	2970	5970	4430	7870	6720	-580	50	-580	140	-580	590

			Ta 6e	ла В.1	– нас	тавак	са пре	ндохте	е стра	нице					
SDSS ID	8	$\lambda L_{\rm gamma 0}$	$R_{ m FeII}$	FW_{-}	MH	FW	QM	FW	10M	z5	0	z^2	ល	z1	0
plate-MJD-fiber		$\left[ergs^{-1} \right]$		km	3-1]	[km	s^{-1}	[km	s^{-1}	kms	;-1]	[kms	5-1]	kms	-1-
1		-)		${ m H}_{eta}$	H_{α}	H_{β}	$\vec{\mathrm{H}}_{lpha}$	H_{β}	$\vec{\mathrm{H}}_{lpha}$	H_{β}	H_{α}	${ m H}_{eta}$	H_{α}	$\mathbf{H}_{\boldsymbol{eta}}$	$\dot{\mathrm{H}}_{lpha}$
7615-56977-0303	0.38	44.92	0.08	4750	4940	1000	6950	9360	8960	1980	0	1980	0	2050	0
7588 - 56903 - 0970	0.16	44.11	0.22	5620	5030	7950	7130	10210	9140	20	0	20	0	0	0
6781 - 56274 - 0387	0.37	44.43	0.20	2700	2560	4310	3800	7080	5720	20	0	360	50	1390	230
1218-52709-0054	0.06	43.49	0.61	3500	3980	5620	6450	8530	9190	150	410	510	1230	950	2150
7582 - 56960 - 0578	0.31	44.22	0.33	2850	5760	4520	8220	7950	10740	02	00	150	180	360	410
1447 - 53120 - 0599	0.03	43.15	0.35	7300	2600	9150	3650	11430	4740	1110	50	300	0	20	0
1809-53792-0602	0.18	44.31	0.29	2480	2930	4160	4340	7660	6720	0	0	220	50	800	230
0650-52143-0279	0.07	43.75	0.29	4230	1780	6050	5030	7800	7780	0	140	-70	820	-70	820
1921 - 53317 - 0429	0.37	45.03	0.35	4810	5300	6780	7620	8820	9950	0	-180	-70	-410	-70	-730
2348-53757-0612	0.05	43.17	0.72	3580	3890	5110	5490	0629	7090	02	-50	150	0	360	-50
1820-54208-0211	0.04	42.55	0.00	5460	6810	6400	9640	7350	12430	-2400	-50	-2040	-50	-1670	-90
4776 - 55652 - 0334	0.09	43.26	0.28	3720	2930	5550	4300	7880	6220	02	0	290	00	1020	370
7878-57340-0683	0.16	44.07	0.47	11270	6510	13850	9530	16280	12460	6410	1830	0202	1830	7580	1830
2771 - 54527 - 0419	0.26	44.90	0.66	3940	4250	6350	6500	9120	9470	290	230	800	640	1390	1600
8237-58162-0604	0.24	44.24	0.33	4880	4050	6920	6280	8880	8560	-70	-1140	-70	-1460	0	-1460
6492 - 56362 - 0190	0.24	44.52	0.06	6490	5390	9480	7950	12320	10510	800	820	1600	1370	2110	1650
1603 - 53119 - 0218	0.04	43.11	0.00	6140	5310	0070	8060	11850	10990	730	460	1460	1100	2050	1650
2223 - 53793 - 0280	0.36	45.27	0.36	6410	6670	9460	9500	12380	12250	-870	0	-870	0	-870	0
6788 - 56428 - 0544	0.31	44.68	0.74	2120	4890	4740	7000	7660	9010	02	-50	220	-50	220	-50
11120-58510-0960	0.26	44.39	0.17	5110	3520	8100	5670	11320	9100	150	-50	220	-180	360	-410
7746-58074-0154	0.27	44.60	0.10	3360	3110	6640	4890	10220	8180	0	0	20	-50	150	-230
7678-57282-0832	0.17	44.20	0.52	4600	2970	7530	4940	10300	7360	1530	140	1830	460	1830	690
2650-54505-0265	0.20	44.40	0.52	3940	4660	6050	7040	8680	9650	0	460	20	910	70	1330
9232- 58037 - 0659	0.37	44.26	0.00	3350	4340	4740	6260	6200	8180	0	50	20	140	70	230
8206-57424-0775	0.22	44.28	0.19	6930	6630	9840	9470	12690	12300	220	320	360	590	580	096
0488-51914-0161	0.04	43.32	0.34	4740	5860	7430	8330	10560	10710	-220	00	-730	180	-1090	270
2341 - 53738 - 0030	0.08	43.39	1.05	6480	1880	9540	4820	12450	5690	-1530	-50	-1530	2160	-1530	2200
8286-57062-0457	0.23	44.82	0.68	3930	4160	6620	6170	9020	8450	-1740	-50	-1960	-140	-1890	-230
1059 - 52618 - 0628	0.06	43.55	0.85	4010	3700	6130	5440	8830	7680	20	140	290	320	099	910
6320 - 56453 - 0040	0.04	42.70	1.05	4750	6120	8040	8670	10970	11190	950	0	1020	0	1020	50
7315 - 56685 - 0958	0.16	44.07	0.01	4090	3840	5840	5670	7590	7860	0	00	0	270	0	730

			Ta6e	ла Б.1	. – нас	Tabak	ca npe	ндохте	е стра	нице					
SDSS ID	~	$\lambda L_{\rm E100\mathring{A}}$	$R_{\rm FeII}$	FW_{-}	HM	FW	QM	FW	10M	<i>2</i> 2	0	z^2	ស	z1	0
plate-MJD-fiber		$\left[ergs^{-1} \right]$		[km:	s^{-1}	[km:	s^{-1}	[km:	s^{-1}	[kms	5-1]	[km£	-1-	[kms	
		1		H_{β}	$H\alpha$	H_{β}	H_{α}	H_{β}	H_{α}	H_{β}	H_{α}	$\mathbf{H}_{\boldsymbol{\beta}}$	H_{α}	H_{β}	$H\alpha$
2128-53800-0038	0.08	43.58	0.47	3210	3750	5030	5710	7150	8130	150	0	220	-50	290	-90
0450-51908-0575	0.11	43.09	1.17	3360	3800	6200	6410	10000	9840	-150	320	-510	1470	-660	3250
6374 - 56326 - 0365	0.12	43.72	0.05	4310	3200	8180	5850	11390	9380	800	180	880	640	880	780
2020-53431-0051	0.04	42.82	1.68	7150	6030	10070	8500	12770	10970	-290	0	-440	0	-660	0
0526 - 52312 - 0537	0.27	44.44	0.39	7000	6440	9910	9310	12830	12230	0	590	0	1100	0	1730
0651 - 52141 - 0535	0.21	44.37	0.58	4960	3890	7300	5990	9630	9050	290	50	580	140	1020	370
11324 - 58395 - 0960	0.28	44.28	1.45	6280	4660	8980	6680	11540	8600	0	0	20	0	0	0
4890-55741-0522	0.40	44.66	0.35	5020	4340	7500	6480	10340	9040	220	-50	099	-180	1160	-370
0652 - 52138 - 0386	0.06	43.24	0.66	4080	3980	5840	5990	7590	8230	0	230	0	500	0	820
1315 - 52791 - 0403	0.02	42.45	0.73	3790	4070	5620	5810	7580	7450	0	-50	-70	-50	-150	-50
11352 - 58456 - 0380	0.33	44.41	0.25	3430	2970	5540	4610	8390	0222	20	50	150	50	220	00
7646 - 57570 - 0949	0.15	43.83	0.39	4010	3110	6120	4800	8380	7580	510	00	1170	230	1680	910
8508-57845-0320	0.32	44.97	0.38	4240	3750	7890	6080	11250	9560	290	0	580	50	580	140
7676 - 57329 - 0427	0.36	45.04	0.18	5980	5830	8890	8820	11660	11940	-580	3170	-580	3670	-580	3670
8192-57348-0310	0.27	44.40	0.44	5840	6180	9130	8740	12120	11210	150	-50	20	-50	150	-50
2202-53566-0592	0.15	44.11	0.41	3640	4610	6330	0069	8730	9500	-1020	140	-1090	320	-1020	460
8520-58191-0527	0.38	45.08	0.49	5320	8470	7510	10600	0026	12860	20	-1490	20	-720	02	-180
11379 - 58438 - 0032	0.34	44.83	0.46	6790	5400	9640	8420	12490	11570	950	460	1020	820	1100	870
8424- 58248 - 0315	0.35	44.78	0.32	2040	1920	3500	3020	6350	5400	0	0	0	0	02	0
8276-57067-0093	0.35	44.60	0.60	6280	7450	9420	10600	12410	13760	150	-230	20	-370	150	-590
0513 - 51989 - 0110	0.19	44.34	0.32	6930	5950	9850	8830	12770	11760	20	550	20	1240	20	1970
7304-56745-0351	0.15	43.75	0.99	4820	0209	6860	8590	8760	11100	0	50	0	0	0	50
8862 - 57461 - 0640	0.19	44.20	0.59	4100	2750	7250	5590	10470	8710	1610	280	2560	1650	2560	1930
8752 - 58402 - 0726	0.29	44.22	0.73	5920	4030	8470	5760	11100	7590	-70	0	-150	0	-290	180
4983 - 55836 - 0260	0.06	43.41	0.01	5330	5270	7740	7510	10010	9750	220	140	440	270	660	410
0517 - 52024 - 0027	0.22	44.55	0.36	5180	4610	7360	6710	9480	9040	-70	-50	-70	-140	0	-270
7585 - 57190 - 0369	0.32	44.69	0.29	5700	5030	8470	7460	11690	10160	440	180	1020	500	2040	1100
2763 - 54507 - 0423	0.05	42.88	0.92	2990	2380	4670	3750	6490	5480	-70	90	-150	180	-70	270
6726 - 56394 - 0296	0.08	43.31	0.42	4890	3200	7660	4800	10950	6630	220	0	510	-50	580	-230
8821-57731-0521	0.39	45.01	0.82	4810	5260	7220	0277	0770	10610	150	50	360	180	580	270
6643 - 56386 - 0502	0.20	44.06	0.16	4520	4110	7220	6350	9630	9460	-440	0	-360	-140	-440	-320

			Tabe	ла Б.1	. – нас	тавак	ca πp∈	ндохт	e crpa	нице					
SDSS ID	~	$\lambda L_{\rm E100\mathring{A}}$	$R_{ m FeII}$	FW	MM	FW	QM	FW	10M	8	00	z2	5 2	z1	0
plate-MJD-fiber		[ergs ⁻¹]		[km	3-1]	[km:	s^{-1}	[km	3-1]	km	s^{-1}	[kms	<u>[1]</u>	[kms	5-1]
		י) י		${\rm H}_{eta}$	$\dot{\mathrm{H}}_{lpha}$	${\rm H}_{eta}$	$\vec{\mathrm{H}}_{lpha}$	H_{eta}	$\dot{\mathrm{H}}_{lpha}$	${ m H}_{eta}$	H_{α}	\mathbf{H}_{eta}	H_{α}	${ m H}_{eta}$	\dot{H}_{α}
1008-52707-0558	0.04	43.02	1.82	3290	2570	6500	4260	10300	8210	-20	90	-70	069	-70	2980
0396 - 51816 - 0276	0.29	45.06	1.57	5760	5030	8100	7140	10430	9150	02	0	02	0	20	0
8533-58017-0080	0.26	44.31	0.18	3140	2970	5470	4570	9410	7450	-70	50	20	0	220	-50
1397 - 53119 - 0190	0.27	45.14	0.92	3430	3750	5840	5850	8390	9140	220	00	580	270	660	640
7633 - 56931 - 0454	0.39	44.67	0.15	7150	7320	10140	10340	13130	13260	0	0	-70	0	0	0
2120-53852-0059	0.19	44.37	0.55	6920	5940	0690	8590	12600	11280	02	00	02	180	02	320
5292 - 55926 - 0802	0.01	40.97	0.00	2630	1780	4460	3930	6430	5900	0	140	20	370	0	320
0833 - 52314 - 0615	0.24	44.85	0.46	6560	6350	9330	9050	12250	11740	290	140	580	180	880	320
0951 - 52398 - 0129	0.03	42.75	0.23	3870	4210	5540	6080	7150	8050	-70	00	0	230	0	370
0960-52425-0522	0.07	43.17	0.22	2410	2420	3570	3520	5620	5030	-70	50	02	50	950	00
0367 - 51997 - 0472	0.36	44.94	0.37	3070	4710	5110	6670	8170	8640	150	-50	580	0	1020	-50
0995 - 52731 - 0004	0.16	44.46	0.54	3210	2890	5040	6050	7300	8940	150	009	510	2290	1020	2610
2235 - 53847 - 0497	0.06	42.82	0.36	3870	4070	5760	6270	7660	9240	02	230	220	069	360	1740
2124-53770-0091	0.13	44.15	0.79	1310	4300	3790	6080	6840	7820	-150	0	-1460	50	-1600	50
11079 - 58485 - 0471	0.27	44.23	0.00	4080	5030	6050	7180	8240	9370	-150	00	-360	140	-510	230
8834-57458-0447	0.19	43.97	0.05	5600	5310	7930	7330	10260	9480	-70	1830	-70	2380	-70	2610
0511 - 52636 - 0315	0.21	44.56	1.07	4310	4620	6940	7460	9420	10710	660	320	1530	870	2120	1190
7295-57067-0300	0.22	44.38	0.23	3570	4340	5400	6540	7510	9150	20	230	150	500	360	910
2229 - 53823 - 0484	0.17	44.27	0.34	5390	5350	7430	7630	9620	9830	-150	-50	0	-50	0	-50
11388-58487-0792	0.27	44.26	0.35	6930	7590	9850	10790	12700	13910	20	-180	02	-370	0	-460
8746-58396-0823	0.31	44.60	0.96	4740	5030	7000	7410	9550	10150	220	270	440	640	660	1370
10723 - 58287 - 0029	0.27	44.60	0.44	5610	5250	7940	7540	10280	9640	-70	50	02-	50	-70	50
7375 - 56981 - 0310	0.37	44.75	0.23	3500	2970	5470	4570	8610	7360	150	50	510	00	1750	500
1726-53137-0566	0.19	44.41	0.65	6930	6720	9850	9460	12770	12210	02	50	02	50	02	50
7866-57002-0196	0.25	44.42	0.15	3360	5810	7370	8240	10730	10620	-290	-50	-510	0	-510	0
9168 - 58067 - 0328	0.21	44.51	0.52	5040	4660	7300	6810	9490	9230	360	180	730	410	1020	640
8510-57846-0806	0.28	43.72	0.28	2770	2150	4450	3290	0629	5350	0	-50	02-	0	-70	-140
0276 - 51909 - 0251	0.36	45.56	0.31	4890	5350	8540	7630	11680	9830	510	-50	510	-50	580	-50
7705-57332-0422	0.34	45.04	0.21	3790	5170	6060	7270	8760	9420	150	50	220	50	290	0
9180-57693-0793	0.23	44.09	0.21	3430	2790	7230	4980	10370	8960	360	-50	510	-50	440	-90
8222-57431-0561	0.16	44.28	0.49	3800	4210	5980	6400	8540	9100	150	180	440	460	660	780

			Ta6e,	ла Б.1	– нас	тавак	ca пре	ндохте	е стра	нице					
ID	~	$\lambda L_{\rm E100\mathring{A}}$	$R_{\rm FeII}$	FW_{I}	MH	FW_{i}	QM	FW	M01	z5	0	z^2	5	z1	0
e-MJD-fiber		ergs ⁻¹		kms	3-1]	km	s^{-1}	km	s ⁻¹]	[kms		[kms		[kms	
				H_{β}	H_{α}	$H\beta$	$\vec{\mathrm{H}}_{lpha}$	H_{β}	H_{α}	$\mathbf{H}_{\boldsymbol{\beta}}$	H_{α}	$\mathbf{H}_{\boldsymbol{\beta}}$	\dot{H}_{α}	\mathbf{H}_{eta}	\dot{H}_{α}
-53851-0315	0.07	43.39	1.62	2990	2980	4740	5870	6930	8170	-220	960	-660	2850	-950	3400
L56947-0624	0.39	44.84	0.24	3570	4890	5830	7120	8530	9450	20	50	290	00	510	140
-57787-0685	0.10	43.79	0.40	3500	4940	5110	6950	6790	0006	0	0	150	0	220	-50
3-52426-0114	0.16	44.52	1.18	5330	3110	7590	5130	10070	8100	20	00	0	460	0	870
3-53319-0382	0.14	43.91	0.92	3580	3520	5840	5350	8470	7960	220	140	580	500	730	1460
7-57655-0526	0.25	44.55	0.93	4740	5850	6710	8320	8750	10740	-70	0	0	0	0	50
9-55953-0964	0.14	44.05	0.00	3850	5700	6170	8120	8570	10590	-1230	50	-1960	90	-2030	180
95-58488-0778	0.28	44.11	0.69	3060	3430	5330	5530	8760	8870	0	140	220	410	290	820
9-57895-0694	0.23	44.36	0.15	5850	4440	8700	7140	11550	10530	440	50	950	270	1610	370
3-54481-0342	0.06	43.91	0.24	6630	5940	9540	8490	12310	10960	-70	0	-70	0	-70	0
9-57483-0652	0.29	44.46	0.04	4230	3930	6790	6080	10150	8830	150	00	510	410	800	870
50-58472-0608	0.27	44.17	0.72	6650	6000	9570	8560	12420	11260	360	50	099	50	1020	90
11-58429-0748	0.09	43.54	0.19	5760	5390	8530	7860	11230	10470	-800	0	-800	0	-730	-50
3-57452-0308	0.23	44.29	0.23	3290	3070	5410	4530	8040	6590	360	50	1020	140	1750	550
1-58078-0882	0.38	44.92	0.61	3360	3290	5180	4980	7660	7820	150	00	099	230	1680	096
-51924-0213	0.26	44.61	0.25	4010	3930	6790	5580	10290	7220	220	0	800	0	1100	0
9-53473-0088	0.08	43.96	0.38	6870	4760	9800	8050	12720	10970	0	-640	0	-640	0	-640
)- 51990-0485	0.08	43.61	0.39	5030	4880	7140	7030	9260	9270	20	-140	150	-270	20	-410
2-51884-0246	0.12	44.29	0.33	4590	5350	6700	7630	8960	10010	-70	50	0	140	20	230
7-58064-0985	0.30	44.46	0.69	2630	2840	4530	4620	7080	7730	150	00	730	500	1390	1330
25-58433-0361	0.28	44.43	0.95	3870	4570	6640	7370	10080	10610	360	180	1240	590	1750	730
3-57428-0376	0.18	44.34	0.28	4240	4660	7740	7180	10950	10060	440	180	2340	500	3940	730
8-57785-0350	0.14	43.96	0.22	5040	4120	7810	6400	11090	9470	360	180	1240	460	2630	1050
3-52201-0094	0.29	44.81	0.19	5620	5580	8760	7860	11830	10150	660	0	1020	0	1020	0
18-58522-0908	0.28	44.71	0.00	4530	4120	7590	6400	11030	9520	0	00	0	370	20	910
5-52162-0058	0.04	42.76	0.00	3130	4200	4590	5940	6050	7670	220	0	360	0	510	0
8-54964-0041	0.20	43.93	0.45	2330	4020	4670	5670	2000	7310	0	0	150	0	150	0
1-57374-0738	0.14	43.75	0.69	3140	4500	5400	0629	8750	9410	20	2480	730	3580	1310	3720
1-58073-0530	0.26	45.39	0.40	4960	3970	7140	6400	9330	8950	-150	50	-150	00	-440	00
1-54243-0575	0.12	44.10	0.52	3870	4030	6350	6780	9200	9670	360	550	950	1470	1170	1880
1-53498-0107	0.29	44.56	0.70	3280	2250	5910	4950	9560	7880	-70	230	220	1560	220	1740

			Tabe	ла В.1	– нас	тавак	ca npe	ндохт	е стра	нице					
SDSS ID	*	$\lambda L_{\rm E100\mathring{A}}$	$R_{\rm FeII}$	FW_{i}	MH	FW_{i}	QM	FW_{1}	10M	z_5	0	z2	LC LC	z1	0
plate-MJD-fiber		$\left[ergs^{-1} \right]$		[kms	;-1]	[km	s^{-1}	[km	3-1]	[kms	[-1]	[kms	2_1_1	[kms	
		1		H_{β}	H_{α}	H_{β}	H_{α}	H_{β}	H_{α}	$\mathbf{H}_{\boldsymbol{\beta}}$	$H\alpha$	$H\beta$	$H\alpha$	H_{β}	$H\alpha$
9229-58015-0356	0.08	43.83	0.66	2770	3980	4450	5940	6930	8230	0	230	02	460	220	730
7309-56991-0300	0.16	44.00	0.28	3800	3430	6280	5220	8910	8010	440	140	1170	270	1750	1050
7648 - 57329 - 0836	0.21	44.17	0.28	3430	2930	6280	4570	9930	7910	220	00	1170	270	1610	090
4231 - 55444 - 0406	0.35	44.58	0.44	4020	3430	6210	5310	8690	8000	220	50	510	180	800	410
7086-56658-0618	0.14	43.58	0.12	6420	6170	9200	8770	11820	11370	0	50	0	00	0	50
0550 - 51959 - 0535	0.04	42.84	0.62	4530	2610	10007	3760	10300	4950	150	50	510	00	950	180
9569 - 57837 - 0370	0.36	44.72	0.61	2850	2700	5030	4160	7220	6860	20	50	220	-50	220	-270
2773 - 54533 - 0466	0.08	43.71	0.22	6920	6210	9840	8590	12760	11100	-70	-90	-70	0	-70	50
11329-58426-0781	0.29	44.53	0.41	2990	1970	5040	5410	8320	9080	20	230	099	2020	1460	2110
7636-56989-0816	0.35	44.47	0.25	1970	4870	3210	7020	5980	9320	20	3120	290	3440	1460	3440
8370-57520-0286	0.22	44.33	0.12	5690	6160	8980	9040	12040	11870	-730	-1600	-800	-1640	-800	-1640
10762 - 58390 - 0882	0.38	44.81	0.25	4160	3520	7080	5530	10590	8690	02	-50	360	-140	360	-370
8238-58171-0317	0.38	44.66	0.87	2410	1700	4010	4310	6500	7880	20	50	360	1280	950	1470
7701-57356-0804	0.12	43.66	0.34	2340	2150	3720	3200	7300	4570	0	-50	220	0	1460	0
2783 - 54524 - 0246	0.32	44.58	0.28	3650	3790	5470	5530	7880	7590	150	50	360	230	1170	640
8530-58016-0316	0.36	44.82	0.07	6860	6300	0270	9410	12690	12330	-150	-1280	-150	-1280	-150	-1280
7379-56713-0977	0.31	44.61	0.32	3360	3530	5470	6460	8240	9400	0	009	220	1790	360	2060
0739 - 52520 - 0388	0.33	45.03	0.63	2550	2700	4380	4210	8470	7220	20	50	0	180	-150	910
7716-58097-0692	0.11	44.00	0.29	4310	3660	6350	5440	8470	7910	220	0	510	50	730	230
1799-53556-0369	0.05	43.19	1.82	5990	2570	8690	5600	11310	8080	-150	280	-220	2300	-360	3770
2658-54502-0154	0.27	44.71	0.06	6210	5260	9280	8370	12350	11300	800	50	800	50	800	50
1014-52707-0302	0.02	42.22	0.00	3050	4880	4360	7120	5740	9490	0	230	0	460	-70	820
7820-56984-0072	0.36	44.51	0.64	3210	3710	5040	6050	7590	8300	150	780	360	1650	730	2060
9198 - 57713 - 0649	0.39	44.77	0.01	6420	5440	9200	7680	11820	9920	0	-50	0	0	0	-50
4273- 55506 - 0248	0.09	43.09	0.14	4080	3520	6050	5390	8160	7950	150	140	510	270	880	640
0495 - 51988 - 0207	0.28	44.85	1.22	4960	4890	2000	6910	9190	8920	0	50	0	50	0	50
10743-58222-0410	0.37	45.24	0.29	8770	7570	12070	11000	15210	13980	730	1510	1100	2570	1320	3260
8828-57445-0698	0.19	44.10	0.27	7030	5260	9590	7870	12230	10530	3370	870	4170	1470	4470	1650
1012-52649-0074	0.10	43.94	0.64	3790	3610	5620	5580	7590	8100	0	230	02	640	150	1330
0667 - 52163 - 0506	0.04	42.87	0.44	10160	7590	12520	10700	14800	13720	5600	270	6180	460	6700	640
8543 - 57542 - 0114	0.26	44.62	0.32	3790	4890	5470	7040	7370	9190	0	50	-70	00	-70	230

			Tabe	ла Б.1	– нас	тавак	са пре	ндохте	е стра	нице					
SDSS ID	8	$\lambda L_{\mathrm{E100}\mathrm{\AA}}$	$R_{\rm FeII}$	FW_{-}	MM	FW	QM	FW	10M	z_5	0	z^2	5	z1	0
plate-MJD-fiber		$\left[ergs^{-1} \right]$		[km;	3^{-1}	[km:	s^{-1}]	[km:	s^{-1}	[kms	-1_	[kms	s^{-1}]	[kms	
		1		H_{β}	H_{α}	$H\beta$	$H\alpha$	$H\beta$	H_{α}	H_{β}	$H\alpha$	$H\beta$	H_{α}	H_{β}	$H\alpha$
11546 - 58488 - 0520	0.25	44.70	0.80	2700	2520	4670	3980	7450	7050	02	-50	290	-50	580	-90
8390-57485-0458	0.18	44.25	0.33	4520	3980	6050	6360	7940	9470	-150	230	20	780	20	1420
8167-57071-0958	0.28	44.73	0.57	3720	3380	5840	5170	8180	8230	360	00	880	410	1310	1550
8740-57367-0264	0.14	43.69	0.41	5410	3380	7450	5580	9210	8690	1020	00	1170	270	1170	460
11087 - 58488 - 0538	0.34	44.72	0.63	2850	2420	4890	3750	7660	5760	02	-50	360	0	510	00
9360-58055-0579	0.20	44.14	0.34	3140	2930	5110	4390	8390	6450	02	0	440	0	1390	-50
7282-56660-0707	0.14	43.81	0.91	4670	4710	7220	6760	10210	8910	-150	-50	-70	0	-150	50
7683 - 58133 - 0229	0.39	44.73	0.45	4740	4300	7810	6810	10880	0260	660	270	1680	870	2260	1650
8192-57348-0118	0.12	43.88	0.12	5110	4940	7150	6950	9340	9010	0	0	0	0	0	50
7711-57667-0916	0.32	44.92	0.12	6920	7310	9840	10000	12680	12740	-70	-270	-70	-50	0	50
2266 - 53679 - 0335	0.39	45.29	0.12	6130	5360	8610	7650	11240	9940	0	500	0	500	0	500
9146-58042-0345	0.35	44.66	0.30	5470	5140	7730	7340	0666	9540	02	1830	150	1830	02	1830
7286-57096-0113	0.23	44.62	0.21	6930	6490	0220	9180	12690	11880	02	0	0	-50	0	0
7427-56751-0490	0.34	44.76	0.58	6350	4990	9280	7920	12120	10900	660	069	1240	1600	1750	2290
8536 - 58015 - 0195	0.13	44.16	0.36	3650	3210	5920	6330	8550	9450	290	550	1100	1930	1830	2110
1277 - 52765 - 0332	0.21	44.70	0.22	5830	5300	8380	7490	10790	9680	150	0	220	0	150	0
1738-53051-0419	0.20	44.59	0.36	4160	5430	6420	7810	9110	10180	02	50	290	50	360	140
8294-57365-0779	0.25	44.45	1.00	2920	1690	5760	3200	9850	3880	0	140	220	910	220	096
1309-52762-0443	0.05	43.10	0.18	3720	4530	5620	6720	7520	9010	510	410	1090	780	1680	1050
8431-57482-0220	0.31	45.18	0.40	5250	5810	7510	8230	0026	10610	0	50	20	0	20	0
2025 - 53431 - 0292	0.08	43.62	0.10	2990	5390	4300	8050	5750	10790	02-	460	-70	910	-70	1280
7676-57329-0352	0.15	43.96	0.26	5250	4150	7500	6300	0260	0000	0	-140	20	-270	150	-590
7401-56808-0628	0.12	43.80	0.35	4740	3660	7220	5670	10500	8770	360	0	950	0	2480	-90
0659 - 52199 - 0111	0.18	44.29	1.25	4680	3570	8190	6230	11480	0000	730	460	1170	1190	1100	1370
1866-53314-0508	0.14	44.72	0.28	4810	4760	6930	7220	9040	0260	0	270	20	550	150	820
7238-56660-0092	0.09	42.94	0.45	3790	3790	5760	5760	7950	8140	150	140	360	460	660	910
3587 - 55182 - 0390	0.38	44.75	0.20	1820	1870	2920	2790	5840	4340	02	-50	150	-50	730	50
1061 - 52641 - 0293	0.24	44.68	0.78	3210	4300	5550	6960	8610	10250	0	270	150	920	150	1460
10740-58223-0547	0.16	43.50	0.50	2550	1830	4160	5500	8100	8670	02-	280	-70	2480	-70	2610
8830-57447-0292	0.21	43.93	0.11	3500	4160	5610	6260	8160	0000	0	50	20	140	150	320
4483- 55587 - 0702	0.34	44.98	0.41	3130	3970	5610	0209	8230	8770	-70	-50	-220	-140	-220	-370

			Tabe	ла В.1	— нас	тавак	ca пре	ндохте	е стра	нице					
SS ID	~	$\lambda L_{z_{100}\hat{\&}}$	$R_{\rm FeII}$	FW_{-}	MM	FW_{i}	QM	FW	10M	<i>2</i> 2	0	z2	ល	z1	0
ate-MJD-fiber		$\left[ergs^{-1} \right]$		[km	3-1]	[km	s^{-1}	[km	s^{-1}	[kms	3-1]	[kms	s ⁻¹]	[kms	
		1		H_{β}	$H\alpha$	H_{β}	H_{α}	H_{β}	H_{α}	H_{β}	$H\alpha$	\mathbf{H}_{eta}	$H\alpha$	H_{β}	$H\alpha$
97-57574-0076	0.11	43.82	0.16	7600	6220	10660	8970	13660	11760	1020	270	1610	640	2120	096
04-57712-0217	0.26	44.38	0.43	2700	3760	4520	6180	7740	8610	20	730	440	1600	1310	1920
07-56902-0339	0.37	44.84	0.47	7010	6360	10080	9150	13000	11940	580	230	1020	550	1460	870
98-56781-0133	0.30	44.41	0.23	4230	4030	7150	6540	10510	0626	440	270	1310	960	1750	1740
91-52817-0578	0.32	44.99	0.26	4670	5980	7590	8490	10660	10960	580	-50	1750	0	2770	0
61-55888-0264	0.08	43.44	0.28	5560	3840	8550	5490	11480	7040	1460	0	2410	0	2700	0
56-51910-0398	0.38	44.93	0.63	3940	5120	6270	2960	8830	11020	290	370	880	910	1530	1330
29-52296-0275	0.15	44.26	0.20	7010	6930	9780	9580	12630	12320	-290	-1820	-440	-2280	-510	-2550
56-55940-0054	0.09	43.44	0.43	3870	2840	5990	4160	8980	5950	220	90	580	230	1530	910
19-52283-0280	0.24	45.12	0.11	5540	4710	7950	6630	10210	8540	0	50	-70	50	0	50
95-52731-0366	0.35	44.69	0.10	4590	5460	0029	8090	8960	10640	220	-2090	440	-2090	800	-2090
74-53476-0350	0.05	43.03	0.27	2770	4030	4670	6500	6860	9380	0	180	0	730	0	1140
34-54562-0278	0.04	43.01	0.34	5820	4660	8150	7170	10480	10230	-150	90	0	230	0	370
44-58124-0558	0.34	44.71	0.20	5340	4580	7900	6640	10390	8750	1830	1470	1900	1600	1900	1600
87-57401-0228	0.18	44.36	1.42	3280	6130	5550	8780	8540	11520	220	180	580	370	800	640
272-58172-0559	0.17	44.09	1.00	6700	3290	9470	5210	12230	8270	0	00	0	370	0	1050
565-58507-0716	0.07	43.20	0.10	3800	3660	6210	5670	9490	8920	290	180	1100	640	2340	1780
70-57520-0318	0.31	44.67	0.44	4010	5250	6200	7540	8820	9860	20	50	360	50	660	00
37-58056-0589	0.30	44.44	0.35	2550	5390	4600	7680	8030	9870	70	0	660	0	1020	0
30-58055-0347	0.21	44.37	0.62	3500	4890	6130	7360	9930	10290	150	230	440	590	580	1140
56-52764-0444	0.07	43.55	0.19	5470	4440	8320	6720	11240	9330	510	230	1170	500	1750	910
11-57390-0950	0.26	44.42	0.53	3360	2790	5690	4300	9050	6950	150	50	730	90	1170	270
75-57786-0093	0.25	44.50	0.20	5780	4720	8120	0690	10610	8750	20	-50	20	-90	20	-230
83-54524-0517	0.06	43.58	0.97	5630	4520	7380	6440	8920	8360	1240	50	1240	50	1170	50
07-58041-0415	0.32	44.63	0.42	9830	9040	12400	12110	14900	14860	4550	2980	5060	3760	5650	4310
72-52289-0442	0.16	44.20	0.22	4890	5260	7000	7450	9190	0006	-70	50	0	50	-150	0
11-57038-0389	0.17	44.07	0.77	3940	3030	6930	6150	10510	9230	0	730	-70	2110	0	2250
75 - 56337 - 0302	0.17	44.31	0.09	5040	4480	8030	6680	11240	9610	360	00	880	180	1020	370
25 - 52295 - 0148	0.31	44.75	1.17	6720	5580	9570	7910	12350	10200	0	0	-70	50	-70	50
56-57687-0779	0.28	44.58	0.52	3650	3110	5550	5080	7450	8140	290	00	580	500	880	1190
33-54585-0612	0.15	44.16	0.27	5110	5620	7810	7990	10800	10370	290	230	950	500	1460	690

			Tabe	ла Б.1	– Hac	тавак	ca npe	ндохте	е стра	нице					
	\$	$\lambda L_{ m E100\mathring{A}}$	$R_{ m FeII}$	FW_{-}	HM	FW	QM	FW	10M	<i>z</i> 2	0	z^2	55	z1	0
D-fiber		$\left[ergs^{-1} \right]$		kms	s_1]	km	s^{-1}	[km	s^{-1}	kms	5-1]	kms	s_1]	[kms	
		י) י		$H\beta$	H_{α}	H_{β}	H_{α}	H_{β}	H_{α}	H_{β}	H_{α}	$\mathbf{H}_{\boldsymbol{\beta}}$	H_{α}	${ m H}_{eta}$	\dot{H}_{α}
09-0149	0.09	43.97	0.44	3870	4520	5620	6400	7510	8320	-70	-50	-70	0	-70	0
92-0770	0.25	44.20	0.69	2550	3350	4520	6700	7880	9410	20	069	150	2660	150	3440
44-0469	0.12	44.08	0.24	4890	4120	7160	6130	9280	8870	510	0	1020	180	1390	550
29-0988	0.04	43.14	0.69	3860	1420	0029	4400	9250	5230	-660	50	-730	2380	-660	2570
83-0331	0.03	42.72	0.26	5110	2200	7220	4580	9340	7930	0	00	-70	1100	0	1420
28-0665	0.22	44.38	0.26	4300	4750	6630	6890	8810	9310	-70	0	-70	50	-70	90
24-0396	0.06	43.21	0.08	5040	4030	7230	5770	9350	7510	20	0	20	00	150	180
02-0485	0.04	43.04	1.04	4970	6890	7010	9810	9060	12640	0	-50	0	-50	0	-50
324-0819	0.28	44.42	0.47	9040	7990	12320	11230	15380	14340	580	50	800	00	950	00
728-0296	0.11	44.12	0.83	4810	2930	6860	6050	8820	9310	0	370	0	1740	20	1880
8472-0734	0.16	44.22	1.03	6870	11380	06790	14700	12710	17740	0	3830	0	4290	0	4560
051 - 0405	0.04	42.76	0.18	4530	3840	6790	5620	9640	7680	0	0	-70	-140	0	-460
409-0336	0.09	43.57	0.53	2840	3750	4450	5720	6640	7780	02	370	360	780	099	1190
666-0265	0.39	44.98	0.44	4590	5340	6480	7490	8380	9680	02	-50	02	-90	20	-90
058-0014	0.05	42.88	0.00	5660	0202	7550	10030	9360	12950	-580	-50	-290	0	-70	0
883-0509	0.06	43.28	0.72	4240	3110	6720	4710	8990	6820	1320	180	2480	410	3000	780
956-0678	0.25	44.53	0.37	6290	5900	9140	8600	11990	11440	440	320	950	640	1320	1010
8157-0496	0.18	44.28	0.12	5550	4940	8470	7550	11390	10570	440	270	1020	069	1310	1140
656 - 0821	0.15	43.57	0.00	3790	3340	5470	5030	7000	7170	0	-50	-70	-180	-150	-410
746-0564	0.12	43.91	0.25	4740	5170	6720	7370	8690	9470	20	50	0	50	20	50
8507-0221	0.24	44.32	0.34	5900	4750	8240	6980	10570	9540	360	-90	510	-230	660	-500
104-0703	0.29	44.23	0.57	3580	5120	6500	7320	9930	9470	02	0	360	0	440	50
780-0634	0.39	44.95	0.07	6270	4620	8900	7130	11670	10280	0	50	0	180	0	320
569 - 0532	0.03	43.31	0.14	5690	5850	8020	8270	10430	10690	0	0	0	-50	20	0
809-0204	0.37	44.79	0.38	3640	6220	6770	8740	9540	11300	-730	0	-800	-50	-800	-50
737-0458	0.08	43.58	0.68	3060	3430	5020	5170	6910	8190	-1020	140	-1090	410	-1090	1780
165-0856	0.26	44.12	1.00	3940	4340	5990	6170	8250	8000	440	50	1020	50	1820	50
580-0715	0.16	43.55	0.55	3510	2610	5120	4990	6650	7740	1020	230	1020	1330	1100	2060
526-0056	0.06	43.58	0.48	2990	4660	4600	6720	6490	8830	02	00	220	230	360	320
039-0036	0.37	44.52	0.12	5540	4520	8390	7180	11230	10470	580	50	1240	140	1750	230
910-0566	0.35	44.65	0.53	4810	5440	7220	8140	10070	11010	290	320	800	730	1310	1230

			Tabe	ла В.1	. – нас	тавак	ca пре	ндохте	е стра	нице					
SDSS ID	~	$\lambda L_{\rm E100\mathring{A}}$	$R_{\rm FeII}$	FW	MM	FW	QM	FW_{-}	M01	z5	0	z2	5	z1	0
plate-MJD-fiber		[ergs ⁻¹]		km	s^{-1}	[km	s^{-1}	[km	s_1]	[kms		[kms	[-1]	[kms	-1-
4		ר) י		${ m H}_{eta}$	$\vec{\mathrm{H}}_{lpha}$	${ m H}_{eta}$	\dot{H}_{lpha}	${\rm H}_{eta}$	H_{α}	${ m H}_{eta}$	H_{α}	${ m H}_{eta}$	H_{α}	${ m H}_{eta}$	\dot{H}_{lpha}
1848-54180-0390	0.23	44.60	0.52	4890	3700	7520	5900	10370	9280	510	50	1240	230	1900	500
6495 - 56339 - 0512	0.11	43.97	0.00	7600	6680	10820	9520	13600	12270	1460	0	2340	0	2920	-90
6006-56105-0084	0.31	44.72	0.02	6940	6860	06790	0026	12710	12530	-70	00	0	180	0	370
1814 - 54555 - 0573	0.13	44.25	0.32	3720	3430	5700	5170	7670	7140	510	230	1170	500	1830	920
9583 - 57809 - 0115	0.39	44.38	0.28	6060	6980	9270	9850	12190	12720	660	50	000	0	660	50
2669 - 54086 - 0451	0.09	44.43	2.13	5640	2880	7830	4620	9810	8280	2560	50	3440	230	4100	870
10471 - 58132 - 0364	0.21	44.72	0.32	5420	5720	7910	8100	10260	10430	3080	50	3080	50	3080	0
7699 - 57574 - 0130	0.38	44.83	0.08	6500	6040	9570	8550	12710	11020	660	0	1390	50	2190	50
8066-57544-0478	0.23	44.21	0.24	2920	2740	4600	4070	7150	5850	150	0	510	50	1310	180
8368-57431-0328	0.20	44.25	0.21	3280	2970	5040	4350	7740	6400	20	50	220	50	1020	00
8366 - 57432 - 0824	0.13	43.74	0.24	5110	4480	7370	6630	9640	9050	440	00	800	320	1170	640
9139- 58038 - 0319	0.24	44.29	0.26	5110	4070	7740	6120	10290	8870	580	50	1460	270	2260	820
0969-52442-0156	0.06	43.53	0.21	8750	7280	10520	10160	12210	13000	5220	-50	5520	0	5740	00
7664 - 57367 - 0282	0.12	43.27	0.25	3940	3200	5980	5160	8240	7810	290	00	730	410	1240	780
0331 - 52368 - 0121	0.02	42.14	0.12	3500	4750	5030	0929	6420	8680	0	0	02	0	150	0
0414-51869-0328	0.18	44.59	0.40	4450	4710	6860	7140	9630	9750	220	320	440	730	730	1140
9320-58069-0713	0.38	44.70	0.35	3800	3340	6280	4980	9120	7500	290	50	1170	140	1970	370
9238-58013-0078	0.17	43.65	0.65	2550	2150	4310	3290	7080	5350	20	-50	510	0	800	50
10762 - 58390 - 0952	0.34	44.59	0.49	4820	4570	7370	0299	10510	9320	290	180	950	460	2340	1280
11380-58462-0637	0.32	44.42	0.59	4170	3750	6430	0609	8550	8510	1100	550	1900	1240	2270	1460
8379-57787-0854	0.26	44.15	0.24	6570	5810	9420	8280	12190	10750	0	50	20	140	20	140
7427-56751-0243	0.36	45.21	0.12	6780	5670	9550	8040	12320	10420	-70	0	-70	0	-70	0
0858 - 52316 - 0104	0.08	43.36	1.49	5330	3030	7660	5180	9920	7340	20	370	20	1330	150	2110
1772 - 53089 - 0077	0.11	43.78	0.54	3650	5160	5540	7310	7730	9460	150	50	290	00	290	140
8850-57782-0928	0.25	44.36	0.58	3860	5630	7210	8000	10050	10340	-950	50	-950	50	-870	0
1829-53494-0464	0.21	44.42	0.06	4010	3520	6500	5490	9780	8500	360	140	1240	460	2480	1370
2666-54230-0591	0.38	44.86	0.98	4230	4800	5980	6810	7740	8820	0	50	0	50	0	50
8878-57785-0255	0.31	44.58	0.08	5770	5130	8330	7460	10960	9890	20	00	290	230	580	270
1342 - 52793 - 0548	0.11	43.83	0.11	3060	4660	5890	0299	8370	8810	-580	0	-800	90	-800	140
8740-57367-0451	0.28	44.42	0.45	2410	2190	3940	3340	7740	5390	20	0	0	-50	-150	-270
2529- 54585 - 0149	0.21	44.45	0.39	2700	3930	4890	6170	8460	0370	02	00	360	500	580	1330

			Ta6e)	ла Б. 1	– нас	тавак	ca ⊓p∈	ндохте	е стра	нице					
SDSS ID	\$	$\lambda L_{\epsilon_{100}{ m \AA}}$	$R_{ m FeII}$	FWI	MH	FW	QM	FW	10M	z_5	0	z^2	л С	z1	
plate-MJD-fiber		$\left[ergs^{-1} \right]$		[kms	-1_	[km	s^{-1}	[km	s^{-1}	[kms	-1]	[kms]		[kms	-1-
				H_{β}	$H\alpha$	H_{β}	H_{α}	H_{β}	$H\alpha$	H_{β}	$H\alpha$	H_{β}	$H\alpha$	H_{β}	$H\alpha$
2532-54589-0599	0.09	43.94	0.61	4670	2880	6710	5080	8610	7500	0	320	0	1050	0	1280
10268 - 58487 - 0144	0.17	43.98	0.39	5110	4250	7960	6490	10950	9560	440	140	1100	460	1610	096
8436-57895-0602	0.27	44.63	0.42	4890	4770	6930	0269	8970	9260	02	2020	02	2200	20	2200
9606-58103-0292	0.33	45.16	0.83	5900	5800	8380	8270	10850	10780	-70	50	-70	50	-70	00
2271 - 53726 - 0343	0.16	43.74	0.32	3270	5880	6690	8570	9890	11350	02	320	290	730	290	1140
7305 - 56991 - 0833	0.19	44.07	0.47	2850	4800	4530	6820	8030	8780	02	50	290	50	1020	0
1727 - 53859 - 0568	0.12	44.35	0.85	3950	3200	5780	4850	7530	7410	1170	0	1240	00	1240	640
5487 - 55982 - 0568	0.04	43.13	0.89	4920	2520	8260	3710	10570	5720	-3770	50	-6520	140	-7820	1050
7737-57722-0520	0.13	44.04	0.76	2690	3740	5020	5660	7280	8310	-950	0	-1380	0	-1460	00
2781 - 54266 - 0054	0.23	44.55	0.11	5190	5160	7820	7360	10450	9460	950	50	1390	50	1530	50
2197 - 53555 - 0599	0.12	43.70	0.80	3360	4340	5980	6580	9710	9100	0	230	-150	550	-220	096
8061-58253-0203	0.35	44.93	0.22	3290	3110	5260	4620	8400	6950	02	0	440	50	1100	180
8756-57687-0850	0.16	43.79	0.57	2410	2740	3800	4070	6710	6490	02	00	0	230	-290	1010
11653 - 58526 - 0616	0.32	44.38	0.50	5410	4030	8340	7240	11330	10310	2190	1190	3510	2660	4020	2890
1831 - 54557 - 0501	0.29	44.65	0.57	4390	2840	6510	6610	8490	10000	2050	730	2120	2840	2050	2940
1393-52824-0035	0.13	44.00	0.16	2850	2610	5620	4300	8830	6860	220	140	1240	460	1530	1100
6369-56217-0610	0.17	43.76	0.27	3280	3020	5330	4570	8460	7180	-70	0	-220	00	-440	320
1418-53142-0053	0.05	43.30	0.35	5710	4350	7840	6690	10040	9030	2050	1330	2560	1740	2710	1790
8414-57846-0157	0.34	44.56	0.43	4160	3240	6120	4890	8460	7450	220	50	440	140	880	590
0613 - 52345 - 0546	0.08	43.46	0.20	11400	3020	14780	4710	17800	8150	3750	180	4190	500	4410	2380
10749 - 58485 - 0473	0.35	44.87	0.18	7650	7490	10850	10500	13840	13470	20	-90	20	-180	150	-320

Биографија аутора

Немања Ракић, рођен је 1.6.1986. године у Сарајеву. Основну школу и гимназију завршио је у Градишци (Република Српска, БиХ). Школске 2005/2006 године уписао је основне студије физике на Природно-математичком факултету у Бањој Луци, које је завршио на Универзитету у Новом Саду, на Природно-математичком факултету, где је дипломирао 2010. године са просечном оценом 9,21. Мастер студије астрофизике на Ерасмус Мундус европском мастер програму Астромундус завршио је 2012. године са просечном оценом 4,05 (скала 1-5, одговара 5-10). Године 2013. је уписао докторске студије на студијском програму Астрономија и астрофизика на Математичком факултету у Београду на којем је положио све предмете предвиђене планом и програмом са просечном оценом 9,625. Од децембра 2012. године изабран је за вишег асистента на Природно-математичком факултету у Бањој Луци, где је и тренутно запослен. Активно се бави промоцијом и популаризацијом науке.

Аутор је једног самосталног научног рада у врхунском међународном часопису (категорије M21) из области истраживања презентоване у овој дисертацији, коаутор је на четири научна рада објављена у врхунским међународним часописима (категорије M21, три рада из области истраживања презентоване у овој дисертацији) и још четири рада са рецензијом у слабијој категорији (један рад из области истраживања презентоване у овој дисертацији). Прилог 1.

Изјава о ауторству

Потписани Немања Ракић

број уписа _____2019/2013_

Изјављујем

да је докторска дисертација под насловом

Моделовање оптичких спектара активних галактичких језгара типа 1

резултат сопственог истраживачког рада,

- да предложена дисертација у целини ни у деловима није била предложена за добијање било које дипломе према студијским програмима других високошколских установа,
- Да су резултати коректно наведени и
- да нисам кршио/ла ауторска права и користио интелектуалну својину других лица.

Потпис докторанда

У Београду, 7.8.2022. године

Прилог 2.

Изјава о истоветности штампане и електронске верзије докторског рада

Име и презиме аутора<u>Немања Ракић</u>

Број уписа <u>2019/2013</u>

Студијски програм Астрономија и астрофизика

Наслов рада Моделовање оптичких спектара активних галактичких језгара типа 1

Ментор<u>проф. др Драгана Илић</u>

Потписани Немања Ракић

изјављујем да је штампана верзија мог докторског рада истоветна електронској верзији коју сам предао/ла за објављивање на порталу **Дигиталног репозиторијума Универзитета у Београду.**

Дозвољавам да се објаве моји лични подаци везани за добијање академског звања доктора наука, као што су име и презиме, година и место рођења и датум одбране рада.

Ови лични подаци могу се објавити на мрежним страницама дигиталне библиотеке, у електронском каталогу и у публикацијама Универзитета у Београду.

Потпис докторанда

Vec /

У Београду, 7.8.2022. године

Прилог 3.

Изјава о коришћењу

Овлашћујем Универзитетску библиотеку "Светозар Марковић" да у Дигитални репозиторијум Универзитета у Београду унесе моју докторску дисертацију под насловом:

Моделовање оптичких спектара активних галактичких језгара типа 1

која је моје ауторско дело.

Дисертацију са свим прилозима предао/ла сам у електронском формату погодном за трајно архивирање.

Моју докторску дисертацију похрањену у Дигитални репозиторијум Универзитета у Београду могу да користе сви који поштују одредбе садржане у одабраном типу лиценце Креативне заједнице (Creative Commons) за коју сам се одлучио/ла.

- 1. Ауторство
- 2. Ауторство некомерцијално
- 3. Ауторство некомерцијално без прераде
- 4. Ауторство некомерцијално делити под истим условима
- 5. Ауторство без прераде
- 6. Ауторство делити под истим условима

(Молимо да заокружите само једну од шест понуђених лиценци, кратак опис лиценци дат је на полеђини листа).

Потпис докторанда

le 1

У Београду, 7.8.2022. године

1. Ауторство - Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, и прераде, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце, чак и у комерцијалне сврхе. Ово је најслободнија од свих лиценци.

2. Ауторство – некомерцијално. Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, и прераде, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце. Ова лиценца не дозвољава комерцијалну употребу дела.

3. Ауторство - некомерцијално – без прераде. Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, без промена, преобликовања или употребе дела у свом делу, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце. Ова лиценца не дозвољава комерцијалну употребу дела. У односу на све остале лиценце, овом лиценцом се ограничава највећи обим права коришћења дела.

4. Ауторство - некомерцијално – делити под истим условима. Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, и прераде, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце и ако се прерада дистрибуира под истом или сличном лиценцом. Ова лиценца не дозвољава комерцијалну употребу дела и прерада.

5. Ауторство – без прераде. Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, без промена, преобликовања или употребе дела у свом делу, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце. Ова лиценца дозвољава комерцијалну употребу дела.

6. Ауторство - делити под истим условима. Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, и прераде, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце и ако се прерада дистрибуира под истом или сличном лиценцом. Ова лиценца дозвољава комерцијалну употребу дела и прерада. Слична је софтверским лиценцама, односно лиценцама отвореног кода.