Parcijalna uredjenja izomorfnih podstruktura relacijskih struktura

eLibrary

 
 

Parcijalna uredjenja izomorfnih podstruktura relacijskih struktura

Show simple item record

dc.contributor.advisor Kurilić, Miloš
dc.contributor.author Kuzeljević, Boriša
dc.date.accessioned 2014-09-26T11:22:23Z
dc.date.available 2014-09-26T11:22:23Z
dc.date.issued 2013
dc.identifier.uri http://hdl.handle.net/123456789/3873
dc.description.abstract The purpose of this thesis is to investigate chains in partial orders (P(X), C), where 11} (X) is the set of domains of isomorphic substructures of a relational structure X. Since each chain in a partial order can be extended to a maximal one, it is enough to describe maximal chains in P(X). It is proved that, if X is an ultrahomogeneous relational structure with non-trivial isomorphic substructures, then each maximal chain in (P(X) U {0} , C) is a complete, R-embeddable linear order with minimum non-isolated. If X is a relational structure, a condition is given for X, which is sufficient for (P(X) U {0} , C) to embed each complete, R-embeddable linear order with minimum non-isolated as a maximal chain. It is also proved that if X is one of the following relational structures: Rado graph, Henson graph, random poset, ultrahomogeneous poset 1,13, or ultrahomogeneous poset C, 2 ; then L is isomorphic to a maximal chain in (P(X) U {0} , C) if and only if L is complete, R-embeddable with minimum non-isolated. If X is a countable antichain or disjoint union of u complete graphs on v vertices with pv = then L is isomorphic to a maximal chain in 0P(X) U {0} , c) if and only if L is Boolean, R-embeddable with minimum non-isolated. en_US
dc.description.provenance Submitted by Slavisha Milisavljevic (slavisha) on 2014-09-26T11:22:23Z No. of bitstreams: 1 PhD_Borisa_Kuzeljevic.PDF: 937155 bytes, checksum: c5aa665c79df9c0f108dd32d861e78ee (MD5) en
dc.description.provenance Made available in DSpace on 2014-09-26T11:22:23Z (GMT). No. of bitstreams: 1 PhD_Borisa_Kuzeljevic.PDF: 937155 bytes, checksum: c5aa665c79df9c0f108dd32d861e78ee (MD5) Previous issue date: 2013 en
dc.format.mimetype PDF en_US
dc.language.iso sr en_US
dc.publisher Novi Sad en_US
dc.title Parcijalna uredjenja izomorfnih podstruktura relacijskih struktura en_US
mf.author.birth-date 1985
mf.author.birth-place Priboj en_US
mf.author.birth-country Srbija en_US
mf.author.residence-state Srbija en_US
mf.author.citizenship Srpsko en_US
mf.author.nationality Srbin en_US
mf.subject.area Mathematics en_US
mf.subject.keywords linear order, partial order, relational structure, isomorphic copy en_US
mf.subject.subarea Order theory en_US
mf.contributor.committee Pilipović, Stevan
mf.contributor.committee Grulović, Milan
mf.contributor.committee Mijajlović, Žarko
mf.contributor.committee Šobot, Boris
mf.university.faculty Department of Mathematics en_US
mf.document.references 27 en_US
mf.document.pages 80 en_US
mf.document.location Novi Sad en_US
mf.document.genealogy-project No en_US
mf.university University of Novi Sad en_US

Files in this item

Files Size Format View
PhD_Borisa_Kuzeljevic.PDF 937.1Kb PDF View/Open

This item appears in the following Collection(s)

Show simple item record