dc.contributor.advisor |
Kurilić, Miloš |
|
dc.contributor.author |
Kuzeljević, Boriša |
|
dc.date.accessioned |
2014-09-26T11:22:23Z |
|
dc.date.available |
2014-09-26T11:22:23Z |
|
dc.date.issued |
2013 |
|
dc.identifier.uri |
http://hdl.handle.net/123456789/3873 |
|
dc.description.abstract |
The purpose of this thesis is to investigate chains in partial orders
(P(X), C), where 11} (X) is the set of domains of isomorphic substructures of
a relational structure X. Since each chain in a partial order can be extended
to a maximal one, it is enough to describe maximal chains in P(X). It is
proved that, if X is an ultrahomogeneous relational structure with non-trivial
isomorphic substructures, then each maximal chain in (P(X) U {0} , C) is
a complete, R-embeddable linear order with minimum non-isolated. If X
is a relational structure, a condition is given for X, which is sufficient for
(P(X) U {0} , C) to embed each complete, R-embeddable linear order with
minimum non-isolated as a maximal chain. It is also proved that if X is one
of the following relational structures: Rado graph, Henson graph, random
poset, ultrahomogeneous poset 1,13, or ultrahomogeneous poset C, 2 ; then L
is isomorphic to a maximal chain in (P(X) U {0} , C) if and only if L is
complete, R-embeddable with minimum non-isolated. If X is a countable
antichain or disjoint union of u complete graphs on v vertices with pv =
then L is isomorphic to a maximal chain in 0P(X) U {0} , c) if and only if
L is Boolean, R-embeddable with minimum non-isolated. |
en_US |
dc.description.provenance |
Submitted by Slavisha Milisavljevic (slavisha) on 2014-09-26T11:22:23Z
No. of bitstreams: 1
PhD_Borisa_Kuzeljevic.PDF: 937155 bytes, checksum: c5aa665c79df9c0f108dd32d861e78ee (MD5) |
en |
dc.description.provenance |
Made available in DSpace on 2014-09-26T11:22:23Z (GMT). No. of bitstreams: 1
PhD_Borisa_Kuzeljevic.PDF: 937155 bytes, checksum: c5aa665c79df9c0f108dd32d861e78ee (MD5)
Previous issue date: 2013 |
en |
dc.format.mimetype |
PDF |
en_US |
dc.language.iso |
sr |
en_US |
dc.publisher |
Novi Sad |
en_US |
dc.title |
Parcijalna uredjenja izomorfnih podstruktura relacijskih struktura |
en_US |
mf.author.birth-date |
1985 |
|
mf.author.birth-place |
Priboj |
en_US |
mf.author.birth-country |
Srbija |
en_US |
mf.author.residence-state |
Srbija |
en_US |
mf.author.citizenship |
Srpsko |
en_US |
mf.author.nationality |
Srbin |
en_US |
mf.subject.area |
Mathematics |
en_US |
mf.subject.keywords |
linear order, partial order, relational structure, isomorphic copy |
en_US |
mf.subject.subarea |
Order theory |
en_US |
mf.contributor.committee |
Pilipović, Stevan |
|
mf.contributor.committee |
Grulović, Milan |
|
mf.contributor.committee |
Mijajlović, Žarko |
|
mf.contributor.committee |
Šobot, Boris |
|
mf.university.faculty |
Department of Mathematics |
en_US |
mf.document.references |
27 |
en_US |
mf.document.pages |
80 |
en_US |
mf.document.location |
Novi Sad |
en_US |
mf.document.genealogy-project |
No |
en_US |
mf.university |
University of Novi Sad |
en_US |