GEOMETRIJA GEODEZIJSKIH SFERA I CEVI

eLibrary

 
 

GEOMETRIJA GEODEZIJSKIH SFERA I CEVI

Show simple item record

dc.contributor.advisor Bokan, Neda
dc.contributor.author Đorić, Mirjana
dc.date.accessioned 2015-10-09T09:14:24Z
dc.date.available 2015-10-09T09:14:24Z
dc.date.issued 1994
dc.identifier.uri http://hdl.handle.net/123456789/4091
dc.description.abstract It is an interesting problem to study the geometry of Riemannian manifolds by investigating the propetries of geometric objects on them. It turns out that the features of the geometry of a family of geometric objects on a Riemannian manifold strongly influence the geometry of the ambient space. In this paper we focus on the same kind of problems considering the extrinsic and intrinsic geometry of tubes about geodesics on Kahler and Sasakian manifolds. In order to obtain our results we mainly work with Jacobi vector fields because this falls among the best ways of analysing the geometry of normal and tubular neighborhoods. In Chapter II we compute the explicit formulas for the shape operator of tubes about co-geodesics on Sasakian space forms, using the technique of Jacobi vector fields. Further, in Chapter III we characterize locally Hermitian symmetric spaces and complex space forms considering the shape operator and the Ricci operator of tubes about geodesics on Kahler manifolds. Finally, in Chapter IV we characterize Sasakian space forms and locally co-symmetric spaces by analysing the action of the shape operator and the Ricci operator on tubes about cp-geodesics on Sa en_US
dc.description.provenance Submitted by Slavisha Milisavljevic (slavisha) on 2015-10-09T09:14:24Z No. of bitstreams: 1 Geometrija_geodezijskih.PDF: 1664254 bytes, checksum: 56b28d6bf757473e3ccb920c4638355a (MD5) en
dc.description.provenance Made available in DSpace on 2015-10-09T09:14:24Z (GMT). No. of bitstreams: 1 Geometrija_geodezijskih.PDF: 1664254 bytes, checksum: 56b28d6bf757473e3ccb920c4638355a (MD5) Previous issue date: 1994 en
dc.language.iso sr en_US
dc.publisher Beograd en_US
dc.title GEOMETRIJA GEODEZIJSKIH SFERA I CEVI en_US
mf.subject.area Matematika en_US
mf.subject.keywords connection, curvature, metric, Kaliler manifold, Sasakian manifold, complex space en_US
mf.subject.subarea Diferencijalna geometrija en_US
mf.contributor.committee Bokan, Neda
mf.contributor.committee Blažić, Novica
mf.contributor.committee Mateljević, Miodrag
mf.contributor.committee Vanhecke, Lieven
mf.university.faculty Mathematical faculty en_US
mf.document.references 87 en_US
mf.document.pages 101 en_US
mf.document.location Belgrade en_US
mf.document.genealogy-project No en_US
mf.university Belgrade University en_US

Files in this item

Files Size Format View
Geometrija_geodezijskih.PDF 1.664Mb PDF View/Open

This item appears in the following Collection(s)

Show simple item record