Algebarska svojstva spektralnih invarijanti u Florovoj homologiji

eBibliothek Repositorium

 
 

Algebarska svojstva spektralnih invarijanti u Florovoj homologiji

Zur Langanzeige

Titel: Algebarska svojstva spektralnih invarijanti u Florovoj homologiji
Autor: Nikolić, Jovana
Zusammenfassung: In this doctoral dissertation we de ne and investigate spectral invariants in Floer homology for conormal bundle and Floer homology of an open sub- set. As a key step to well de ned spectral invariants we give a construction of Piunikhin-Salamon-Schwarz isomorphism in both of these homologies. Ad- ditional algebraic structures, such as a product on Floer homology, give us various inequalities between spectral invariants. We can compare spectral in- variants from di erent Floer homologies by observing appropriate perturbed holomorphic Riemmanian surfaces with boundary.
URI: http://hdl.handle.net/123456789/4506
Datum: 2017

Dateien zu dieser Ressource

Dateien Größe Format Anzeige
J_Nikolic_doktteza.pdf 2.076Mb PDF Öffnen

Die folgenden Lizenzbestimmungen sind mit dieser Ressource verbunden:

Das Dokument erscheint in:

Zur Langanzeige