SLABA INTEGRACIJA VEKTOR-VREDNOSNIH FUNKCIJA SA VREDNOSTIMA U IDEALIMA OPERATORA I VEZA SA ELEMENTARNIM OPERATORIMA

eLibrary

 
 

SLABA INTEGRACIJA VEKTOR-VREDNOSNIH FUNKCIJA SA VREDNOSTIMA U IDEALIMA OPERATORA I VEZA SA ELEMENTARNIM OPERATORIMA

Show simple item record

dc.contributor.advisor Jocić, Danko
dc.contributor.author Milović, Matija
dc.date.accessioned 2025-08-20T14:09:48Z
dc.date.available 2025-08-20T14:09:48Z
dc.date.issued 2025-08-18
dc.identifier.uri http://hdl.handle.net/123456789/5768
dc.description.abstract The subject of this dissertation is the study of the belonging of weak operator in- tegrals in appropriate ideals of compact operators, as well as the investigation of perturbation inequalities. These questions were previously considered in [16], where Cauchy–Schwarz type inequalities were established. In addition to providing norm estimates, these inequalities also yield sufficient conditions for an operator integral to belong to a given ideal. In the first part of the dissertation, using these inequalities, perturbation norm inequalities are derived for elementary operators generated by analytic functions. Specially, for an analytic function f, trigonometric polynomials T, S : R → C and t ∈ R, if fT S,t, f¯T T,t and f¯SS,t are the associated analytic functions, and if X ∈ B(H) and the operator P∞ n=1(AnXBn − CnXDn) belongs to a symmetric norming (s.n.) ideal CΦ(H), for some s.n. function Φ, then the following inequality holds ∞X n=1 (A∗ nAn− C∗ nCn) 1 2 fT S,t ∞X n=1 An⊗Bn X − fT S,t ∞X n=1 Cn⊗Dn X ∞X n=1 (BnB∗ n − DnD∗ n) 1 2 Φ ⩽ f¯T T,t ∞X n=1 A∗ nAn − f¯T T,t ∞X n=1 C∗ nCn 1 2 ∞X n=1 (AnXBn − CnXDn) × f¯SS,t ∞X n=1 BnB∗ n − f¯SS,t ∞X n=1 DnD∗ n 1 2 Φ , under certain conditions on the families (An)∞ n=1, (Bn)∞ n=1, (Cn)∞ n=1 and (Dn)∞ n=1 in B(H). Next, the dissertation considers vector measures induced by weak∗ integrable operator- valued functions taking values in Shatten–von Neumann ideals. Furthermore, the criteria for the compactness and nuclearity of the Gel’fand integral are derived, with emphasis on positive operator-valued functions. Finally, depending on the properties of the symmetric norming function Φ, the conse- quences of the condition sup e,f ∈B Z Ω Φ((⟨Aten, fn⟩)∞ n=1)dμ(t) < +∞. are explored. More precisely, it is proved that the weak∗ integral belongs to the symmetric ideal CΦ(H), as well as the Gelfand and Pettis integrability of the CΦ(H)-valued function A . en_US
dc.description.provenance Submitted by Slavisha Milisavljevic (slavisha) on 2025-08-20T14:09:47Z No. of bitstreams: 1 Matija_Milovic_doktorska_disertacija.pdf: 2652287 bytes, checksum: 54575449188cd514567e003aa69ebb35 (MD5) en
dc.description.provenance Made available in DSpace on 2025-08-20T14:09:48Z (GMT). No. of bitstreams: 1 Matija_Milovic_doktorska_disertacija.pdf: 2652287 bytes, checksum: 54575449188cd514567e003aa69ebb35 (MD5) Previous issue date: 2025-08-18 en
dc.language.iso sr en_US
dc.publisher Beograd en_US
dc.title SLABA INTEGRACIJA VEKTOR-VREDNOSNIH FUNKCIJA SA VREDNOSTIMA U IDEALIMA OPERATORA I VEZA SA ELEMENTARNIM OPERATORIMA en_US
mf.author.birth-date 1991-02-22
mf.author.birth-place Beograd en_US
mf.author.birth-country Srbija en_US
mf.author.residence-state Srbija en_US
mf.author.citizenship Srpsko en_US
mf.author.nationality Srbin en_US
mf.subject.area Mathematics en_US
mf.subject.keywords erturbations of elemental transformers, Weak integration on Banach spaces, Symmetric norming functions and ideals en_US
mf.subject.subarea Analysis en_US
mf.contributor.committee Milošević, Stefan
mf.contributor.committee Arsenović, Miloš
mf.contributor.committee Lazarević, Milan
mf.contributor.committee Đorđević, Dragan
mf.university.faculty Mathematical Faculty en_US
mf.document.references 35 en_US
mf.document.pages 80 en_US
mf.document.location Beograd en_US
mf.document.genealogy-project No en_US
mf.university Belgrade University en_US

Files in this item

Files Size Format View
Matija_Milovic_doktorska_disertacija.pdf 2.652Mb PDF View/Open

This item appears in the following Collection(s)

Show simple item record